
Usuba,
optimizing and trustworthy bitslicing compiler

Darius Mercadier Pierre-Évariste Dagand
firstname.name@lip6.fr

Sorbonne Université, CNRS, Inria, LIP6,
F-75005 Paris, France

Bitslicing consists in reducing an algorithm to bitwise operations (AND, OR,
XOR, NOT, etc.), at which point it can be ran with bit-level parallelism, view-
ing a n-bits register as n 1-bit registers, and a bitwise AND as n-parallel AND
operators [1]. Bitslicing is thus able to increase performance by exploiting data-
parallelism, while improving security by disabling cache-timing attacks – since
a circuit runs in constant time. Bitsliced algorithms heavily benefit from SIMD
extensions since their throughput is directly proportional to the size of the reg-
isters they use.

However, writing a program in bitsliced form is a tedious and error prone
task, which produces a code that is hard to read, maintain, and optimize. To
relieve the programmers from the burden of manually writing bitsliced code, we
developed usuba, a synchronous dataflow language producing bitsliced C code.
The benefits of usuba are threefold. First and by design, any software circuit
specified in usuba admits a bitsliced (and therefore efficient) implementation.
Second, the informal description of symmetric cryptographical algorithms (by
means of pseudo-circuits) directly translates into usuba’s formalism: as a result,
one can effectively reason about – through a formal semantics – and then run the
specification. Finally, usuba generates optimized C code with SIMD intrinsics,
without needing the programmer to write any architecture-specific code. Based
on the AES implementation of Käsper and Schwabe [2], we designed a general
model of bitslicing, called n-slicing, which gives the programmer fine-grained
control over the structure of the C code generated by usuba.

The codes generated by usuba exhibits similar or slighly lower performances
than hand-tuned C code on mainstream ciphers (like DES, AES, Serpent, Chacha20),
while being able to be transparently ported on various vector extensiosn (SSE,
AVX, AVX2, AVX-512) through a simple compilation flag.

References
[1] E. Biham. A fast new DES implementation in software. In FSE, 1997.

doi:10.1007/BFb0052352.

[2] E. Käsper and P. Schwabe. Faster and timing-attack resistant AES-GCM.
CHES, 2009. doi:10.1007/978-3-540-74735-2_9.

1

http://dx.doi.org/10.1007/BFb0052352
http://dx.doi.org/10.1007/978-3-540-74735-2_9

