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Abstract

Bitslicing is a technique commonly used in cryptography to implement high-throughput
parallel and constant-time symmetric primitives. However, writing, optimizing and pro-
tecting bitsliced implementations by hand are tedious tasks, requiring knowledge in
cryptography, CPU microarchitectures and side-channel attacks. The resulting programs
tend to be hard to maintain due to their high complexity. To overcome those issues, we
propose Usuba, a high-level domain-specific language to write symmetric cryptographic
primitives. Usuba allows developers to write high-level specifications of ciphers with-
out worrying about the actual parallelization: an Usuba program is a scalar description
of a cipher, from which the Usuba compiler, Usubac, automatically produces vectorized
bitsliced code.

When targeting high-end Intel CPUs, the Usubac applies several domain-specific op-
timizations, such as interleaving and custom instruction-scheduling algorithms. We are
thus able to match the throughputs of hand-tuned assembly and C implementations of
several widely used ciphers.

Futhermore, in order to protect cryptographic implementations on embedded devices
against side-channel attacks, we extend our compiler in two ways. First, we integrate
into Usubac state-of-the-art techniques in higher-order masking to generate implemen-
tations that are provably secure against power-analysis attacks. Second, we implement a
backend for SKIVA, a custom 32-bit CPU enabling the combination of countermeasures
against power-based and timing-based leakage, as well as fault injection.
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Résumé

Le bitslicing est une technique utilisée pour implémenter des primitives cryptographiques
efficaces et s’exécutant en temps constant. Cependant, écrire, optimiser, et sécuriser
manuellement des programmes bitslicés est une tâche fastidieuse, nécessitant des con-
naissances en cryptographie, en microarchitecture des processeurs et en attaques par
canaux cachés. Afin de remédier à ces difficultés, nous proposons Usuba, un langage
dédié permettant d’implémenter des algorithmes de cryptographie symétrique. Usuba
permet aux développeurs d’écrire des spécifications de haut niveau sans se soucier de
leur parallélisation: un programme Usuba est une description scalaire d’une primitive,
à partir de laquelle le compilateur Usuba, Usubac, produit automatiquement un code
bitslicé et vectorisé.

Afin de produire du code efficace pour les processeurs haut de gamme, Usubac ap-
plique plusieurs optimisations spécialement conçues pour les primitives cryptographiques,
telles que l’entrelacement et l’ordonnancement d’instructions. Ainsi, le code produit par
notre compilateur offre des performances comparables à du code assembleur ou C opti-
misé à la main.

De plus, afin de générer des implémentations sécurisées contre des attaques par canaux
cachés, nous proposons deux extensions de Usubac. Lorsque les attaques par analyse de
courant sont un risque à considérer, Usubac est capable de protéger les implémentations
qu’il produit à l’aide de masquage booléen. Si, additionellement, des attaques par injec-
tion de fautes doivent être prévenues, alors Usubac peut générer du code pour SKIVA,
un processeur 32-bit offrant des instructions permettant de combiner des contre-mesures
pour du code bitslicé.
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Chapter 1

Introduction

Cryptography, from the Ancient Greek kryptos ”hidden” and graphein ”to write”, is the
practice of securing a communication by transforming its content (the plaintext) into an
unintelligible text (the ciphertext), using an algorithm called a cipher, which often takes
as additional input a secret key known only from the people encrypting and decrypting
the communication. The first known use of cryptography dates back to ancient Egypt,
in 1900 BCE. Almost 2000 years later, Julius Caesar was notoriously using cryptography
to secure his orders to his generals, using what would later be known as a Caesar ci-
pher, which consists in replacing each letter by another one such that the ith letter of the
alphabet is replaced by the (n+i)th one (for some fixed n between 1 and 25), wrapping
around at the end of the alphabet. Throughout history, the military would continue to
use cryptography to protect their communications, with the famous example of Enigma,
used by Nazi Germany during World War II. Nowadays, in our increasingly digital and
ever more connected world, cryptography is omnipresent, protecting sensitive data (e.g.,
passwords, banking data) and securing data transfers over the Internet, using a multi-
tude of ciphers.

The basic blocks of modern cryptography are called cryptographic primitives, and can
be divided into three main categories:

• Asymmetric (or public-key) ciphers, which use two different keys for encryption
and decryption: one is public and used for encryption, while the other one is pri-
vate and used for decryption. Commonly used examples of asymmetric ciphers
include RSA [265] and elliptic curves such as Curve25519 [59].

• Symmetric (or secret-key) ciphers, which use the same (secret) key for both encryp-
tion and decryption, and are subdivided into two categories:

– Stream ciphers, which generate a pseudo-random bit-stream and xor it with
the plaintext. The most widely used stream cipher in software is CHACHA20 [61].

– Block ciphers, which only encrypt a single fixed-size block of data at a time.
When the plaintext is longer than the block length, a block cipher is turned into
a stream cipher using an algorithm called a mode of operation, which describes
how to repeatedly call the block cipher until the whole plaintext is encrypted.
The most used block cipher is the Advanced Encryption Standard [230] (AES),
which replaces the now outdated Data Encryption Standard [229] (DES).

• Hash functions, which do not require a key, and are not reversible. They are typi-
cally used to provide data integrity or to irreversibly encrypt passwords. MD5 [264]
and SHA-1 [283] are two well-known hash functions.

13



14 CHAPTER 1. INTRODUCTION

1.0.1 Secure Implementations

Cryptanalysis focuses on finding weaknesses in cryptographic primitives, either in their
algorithms or in their implementations. For instance, the Caesar cipher, presented earlier,
is easily broken by trying to shift all letters of the ciphertext by every possible n (between
1 and 25) until it produces a text that makes sense. Examples of more advanced attacks
include related-key attack [79, 176, 54], which consists in observing similarities in the ci-
phertext produced by a cipher for a given plaintext with different keys, and differential
cryptanalysis [73, 194], where several plaintexts are encrypted, and the attacker tries to
find statistical patterns in the produced ciphertexts. A cipher is considered algorithmi-
cally secure if no practical attack exists, that is, no attack can be carried out in a reasonable
amount of time or set up at a reasonable cost.

Even when cryptanalysis fails to break a cipher on an algorithmic level, its implemen-
tation might be vulnerable to side-channel attacks, which rely on physically monitoring a
the execution of a cipher, in order to recover secret data. Side-channel attacks exploit
physical vulnerabilities of the architecture a cipher is running on: executing a cipher
takes time, consumes power, induces memory transfers, etc., all of which could be attack
vectors. A typical example is timing attacks [185, 95, 58], which exploit variations of the
execution time of a cipher due to conditional branches depending on secret data. For
instance, consider the following C code that checks if a provided password matches an
expected password:

int check_password(char* provided, char* expected, int length) {
for (int i = 0; i < length; i++) {

if (provided[i] != expected[i]) {
return 0;

}
}
return 1;

}

If provided and expected start with different characters, then this function will quickly
return 0. However, if provided and expected start with the same 10 characters, then
this function will loop ten times (and therefore will take longer) before returning 0, thus
informing an attacker monitoring the execution time of this function that they have the
first characters right. This vulnerability could be fixed by decorrelating the execution
time from secret inputs, making it constant-time:

int check_password(char* provided, char* expected, int length) {
int flag = 1;
for (int i = 0; i < length; i++) {

if (provided[i] != expected[i]) {
flag = 0;

}
}
return flag;

}

Timing attacks can also be possible in the absence of conditional execution based on
secret data: the time needed to read some data from memory on a modern computer
depends heavily on whether those data are in cache. An attacker could therefore design
a cache-timing attack, i.e., a timing attack based on cache accesses pattern.

By monitoring the power consumption of a cipher, an attacker can carry a power anal-
ysis [186, 213] to gain knowledge of secret data: power consumption can be correlated
with the number of transistor switching state, which may itself depend on the value of
the secret data [187].
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Rather than being passive (i.e., observing the execution without tampering with it), an
attacker can be active and inject faults in the computation [75, 32, 20] (using, for example,
ionizing radiation, electromagnetic pulses, or lasers). Consider the following C code,
which returns some secret data if it is provided with the correct pin code:

char* get_secret_data(int pin_code) {
if (pin_code != expected_pin_code) {

return NULL;
}
return secret_data;

}

An attacker could inject a fault during the execution of this code in order to skip the
return NULL instruction, which would cause this function to return the secret data even
when provided with the wrong pin code.

Protecting code against faults requires a deep understanding of both the hardware
and existing attacks. For instance, let us consider a function called lookup, which takes
as input a 2-bit integer index, and returns the 2-bit integer at the corresponding index in
a private array table:

int lookup(int index) {
int table[4] = { 3, 0, 1, 2 };
return table[index];

}

This code is vulnerable to cache-timing attacks (or rather, would be, if executed on
a CPU where a cache line is 4 bytes wide), since table[index] might hit or miss in the
cache depending on the value of index. To make lookup resilient to such attacks, we can
transform it to remove the table and only do constant-time bitwise operations instead:

int lookup_ct(int index) {
// Extracting the index's 2 bits
bool x0 = (index >> 1) & 1;
bool x1 = index & 1;

// Computing the lookup through bitwise operations
bool r1 = ˜x1;
bool r0 = ˜(x0 ˆ x1);

// Recombining the result's bits together
return (r0 << 1) | r1;

}

lookup_ct is functionally equivalent to lookup. Its code does not perform any memory
accesses depending on secret data, and is thus resilient to cache-timing attacks.

However, lookup_ct is still vulnerable to power analysis attacks: computing ˜x1,
for instance, might consume a different amount of power depending on whether x1 is
0 or 1. To thwart power-based attacks, we can use boolean masking, which consists in
representing each bit b of secret data by n random bits (called shares) such that their xor
is equal to the original secret bit: b = b1 ˆ b2 ˆ ... ˆ bn for each secret bit b. The
idea is that an attacker needs to determine the value of n bits of data in order to know the
value of a single secret bit, which increases exponentially (with n) the cost of an attack.
Adding this protection to lookup_ct would produce the following code (assuming that
index has already been masked and is therefore now an array of shares):
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int* lookup_ct_masked(int index[NUMBER_OF_SHARES]) {
// Extracting the index's 2 bits
bool x0[NUMBER_OF_SHARES], x1[NUMBER_OF_SHARES];
for (int i = 0; i < NUMBER_OF_SHARES; i++) {

x0[i] = (index[i] >> 1) & 1;
x1[i] = index[i] & 1;

}

// Computing the lookup
bool r0[NUMBER_OF_SHARES], r1[NUMBER_OF_SHARES];
// r1 = ˜x1
r1[0] = ˜x1[0];
for (int i = 1; i < NUMBER_OF_SHARES; i++) {

r1[i] = x1[i];
}
// r0 = ˜(x0 ˆ x1)
r0[0] = ˜(x0[0] ˆ x1[0]);
for (int i = 1; i < NUMBER_OF_SHARES; i++) {

r0[i] = x0[i] ˆ x1[i];
}

// Recombining the result's bits together
int result[NUMBER_OF_SHARES];
for (int i = 0; i < NUMBER_OF_SHARES; i++) {

result[i] = (r0[i] << 1) | r1[i]
}
// (pretending that we can return local arrays in C)
return result;

}

Note that computing a masked not only requires negating one of the shares (we
arbitrarily chose the first one): negating a bit b shared as b0 and b1 is indeed (˜b0)
ˆ b1 rather than (˜b0) ˆ (˜b1). Computing a masked xor between two masked
values, on the other hand, requires xoring all of their shares: (a0, a1, ..., an) ˆ
(b0, b1, ..., bn) = (a0ˆb0, a1ˆb1, ..., anˆbn).

Protecting this code against fault injection could be done by duplicating instructions,
which would add yet another layer of complexity. However, one must be careful about
the interactions between countermeasures: adding protections against faults could undo
some of the protections against power analysis [256, 257, 112]. Conversely, an attacker
could combine fault injection and power analysis [19, 267, 135], which needs to be taken
into account when designing countermeasures [260, 125].

1.0.2 High-Throughput Implementations

A paramount requirement on cryptographic primitive is high throughput. Ideally, cryp-
tography should be completely transparent from the point of view of the end users. How-
ever, the increasing complexity of CPU microarchitectures makes it hard to efficiently
implement primitives. For instance, consider the following C code:

int a, b, c, d;
for (int i = 0; i < 2000000000; i++) {

a = a + d;
b = b + d;
c = c + d;

}

An equivalent x86 assembly implementation is:
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movl $2000000000, %esi
.loop:

addl %edi, %r14d
addl %edi, %ecx
addl %edi, %eax
addl %edi, %r14d
addl %edi, %ecx
addl %edi, %eax
addq $-2, %rsi
jne .loop

The main loop of this code contains 7 additions and a jump. Since modern superscalar
Intel CPUs can execute 4 additions per cycles, or 3 additions and a jump, one could expect
the body of the loop to execute in 2 cycles. However, depending on the alignment of the
jump instruction1 (jne .loop), the loop will execute in 3 cycles rather than 2.

In order to achieve the best throughputs possible, cryptographers resort to various
programming trick. One such trick, popularized by Matsui [206], is called interleaving.
To illustrate its principle, consider for instance the following imaginary block cipher,
written in C:

void cipher(int plaintext, int key[2], int* ciphertext) {
int t1 = plaintext ˆ key[0];

*ciphertext = t1 ˆ key[1];
}

void encrypt_blocks(int* input, int key[2], int* output, int length) {
for (int i = 0; i < length; i++) {

cipher(input[i], key, &output[i]);
}

}

The cipher function contains two instructions. Despite the fact that modern CPUs are
superscalar and can execute several instructions per cycles, the second instruction (t1 ˆ
key[1]) uses the result of the first one (t1 = plaintext ˆ key[0]) and thus cannot
be computed in the same cycle. The execution time of encrypt blocks can thus be
expected to be length ∗ 2 cycles. Matsui’s trick consists in unrolling once the main loop
and interleaving two independent instances of cipher:

void cipher_inter(int plaintext[2], int key[2], int ciphertext[2]) {
int t1_0 = plaintext[0] ˆ key[0];
int t1_1 = plaintext[1] ˆ key[0];
ciphertext[0] = t1_0 ˆ key[1];
ciphertext[1] = t1_1 ˆ key[1];

}

void encrypt_blocks_inter(int* input, int key[2], int* output, int length) {
for (int i = 0; i < length; i+=2) {

cipher_inter(&input[i], key, &output[i]);
}

}

This new code is functionally equivalent to the previous one. cipher inter computes
the ciphertexts of 2 plaintexts at the same time, and the main loop of encrypt blocks inter
thus performs twice less iterations. However, since the first two (resp., last two) instruc-
tions of cipher inter have no data dependencies between them, they can be executed

1See https://stackoverflow.com/q/59883527/4990392

https://stackoverflow.com/q/59883527/4990392
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during the same cycle. cipher inter thus takes as many cycles as cycle to be exe-
cuted, but computes two ciphertexts instead of one. Overall, encrypt blocks inter
is thus twice faster than encrypt blocks.

1.0.3 The Case for Usuba

Implementing high-throughput cryptographic primitives, or securing primitives against
side-channel attacks are complicated and tedious tasks. Both are hard to get right and
tend to obfuscate the code, thus hindering code maintenance. Trying to achieve both at
the same time, performance and side-channel protection, is a formidable task.

Instead, we propose Usuba [212, 211], a domain-specific programming language de-
signed to write symmetric cryptographic primitives. Usuba is a high-level program-
ming language, enjoying a straightforward formal semantics, allowing to easily reason
on program correctness. Usuba programs are constant-time by construction, and thus
protected against timing attacks. Furthermore, Usuba can automatically insert counter-
measures, such as Boolean masking, to protect against power-based side-channels. Fi-
nally, Usuba compiles to high-performance C code, exploiting SIMD extensions of mod-
ern CPUs when available (SSE, AVX, AVX512 on Intel), thus performing on par with
hand-tuned implementations.

The design of Usuba is largely driven by the structure of block ciphers. A block
cipher typically uses bit-permutations, bitwise operations, and sometimes arithmetic op-
erations, and can therefore be seen as a stateless circuit. These basic operations are com-
bined to form a round, and a block cipher is defined as n (identical) rounds, each of them
taking the output of the previous round as well as a key as input. For instance, the
RECTANGLE [309] block cipher takes as input a 64-bit plaintext and 25 64-bit keys, and
produces the ciphertext through 24 rounds, each doing a xor, and calling two auxiliary
functions: SubColumn (a lookup table), and ShiftRows (a permutation). Figure 1.1a rep-
resents RECTANGLE using a circuit.

Usuba aims at providing a way to write an implementation of a cipher which is
as close to the specification (i.e., the circuit) as possible. As such, RECTANGLE can be
straightforwardly written in Usuba in just a few lines of code, as shown in Figure 1.1b.
The code should be self-explanatory: the main function Rectangle takes as input the
plaintext as a tuple of 4 16-bit elements, and the key as a 2D vector, and computes 25
rounds, each calling the functions ShiftRows, described as 3 left-rotations, and SubColumn,
which computes a lookup in a table. This code is simple, and as close to the specifica-
tion as can be. Yet, it compiles to a C code which is about 20% faster than the reference
implementation (Section 5.1), while being much simpler and more portable: whereas the
reference implementation explicitly uses SSE and AVX SIMD extensions, Usuba is not
bound to a specific SIMD extension.

One of the other main benefits of Usuba is that the code it generates is constant-time
by construction. To write constant-time code with traditional languages (e.g., C) is to fight
an uphill battle against compilers [27], which may silently rewrite one’s carefully crafted
program into one vulnerable to timing attacks, and against the underlying architecture
itself [216], whose undocumented, proprietary micro-architectural features may leak se-
crets through timing or otherwise. For instance, the assembly generated by Clang 9.0 for
the following C implementation of a multiplexer:

bool mux(bool x, bool y, bool z) {
return (x & y) | (˜x & z);

}

uses a cmove instruction, which is not specified to be constant-time [259]. Likewise, some
integer multiplication instructions are known not to be constant-time, causing library



19

Ciphertext (64 bits)

   key₂₅
(64 bits)

ShiftRows
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   key₂₄
(64 bits)

...

ShiftRows

SubColumn

   key₁
(64 bits)

ShiftRows

SubColumn

   key₀
(64 bits)

Plaintext (64 bits)

(a) RECTANGLE as a circuit

table SubColumn (in:v4) returns (out:v4) {
6 , 5, 12, 10, 1, 14, 7, 9,
11, 0, 3 , 13, 8, 15, 4, 2

}

node ShiftRows (input:u16[4]) returns (out:u16[4])
let

out[0] = input[0];
out[1] = input[1] <<< 1;
out[2] = input[2] <<< 12;
out[3] = input[3] <<< 13

tel

node Rectangle (plain:u16[4],key:u16[26][4])
returns (cipher:u16[4])

vars state : u16[4]
let

state = plain;
forall i in [0,24] {

state := ShiftRows(SubColumn(state ˆ key[i]))
}
cipher = state ˆ key[25]

tel

(b) RECTANGLE written in Usuba

Figure 1.1: The RECTANGLE cipher
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developers to write their own software-level constant-time implementations of multi-
plication [247]. The issue is so far-reaching that tools traditionally applied to hardware
evaluation are now used to analyze software implementations [259], treating the pro-
gram and its execution environment as a single black-box and measuring whether its
execution time is constant with a high enough probability. Most modern programming
languages designed for cryptography have built-in mechanism to prevent non-constant-
time operations. For instance, HACL* [310] has the notion of secure integers that cannot
be branched on, and forbids the use of non-constant-time operations like division or
modulo. FaCT [99], on the other hand, takes the stance that HACL* is too low-level,
and that constant-timeness should be seen as a compilation problem: it provides high-
level abstractions that are compiled down to constant-time idioms. Adopting yet another
high-level approach, Usuba enforces constant-time by adopting (in a transparent manner
from the developer’s perspective) a programming model called bitslicing.

Bitslicing was first introduced by Biham [72] as an implementation trick to speed up
software implementations of DES. Intuitively, the idea of bitslicing is to represent a n-bit
value as 1 bit in n registers. In the case of 64-bit registers, each register therefore has
63-bit empty bit remaining, which can be filled in the same fashion by other independent
values. To manipulate such data, the cipher must be reduced to bitwise logical operations
(and, or, xor, not). On a 64-bit machine, a bitwise operation then effectively works like
64 parallel 1-bit operations. Throughput is thus achieved by parallelism: 64 instances
of the cipher are computed in parallel. Consequently, bitslicing is especially good at
exploiting vector extensions of modern CPUs, which offer large registers (e.g., 128-bit
SSE, 256-bit AVX and 512-bit AVX-512 on Intel). Bitsliced implementations are constant-
time by design: no data-dependent conditionals nor memory accesses are made (or, in
fact, possible at all). Many record-breaking software implementations of block ciphers
exploit this technique [189, 207, 174, 33], and modern ciphers are now designed from
the ground up with bitslicing in mind [78, 309]. However, bitslicing implies an increase
in code complexity, making it hard to write efficient bitsliced code by hand, as can be
demonstrated by the following few lines of C code that are part of a DES implementation
written by Matthew Kwan [192]:

s1 (r31 ˆ k[47], r0 ˆ k[11], r1 ˆ k[26], r2 ˆ k[3], r3 ˆ k[13],
r4 ˆ k[41], &l8, &l16, &l22, &l30);

s2 (r3 ˆ k[27], r4 ˆ k[6], r5 ˆ k[54], r6 ˆ k[48], r7 ˆ k[39],
r8 ˆ k[19], &l12, &l27, &l1, &l17);

s3 (r7 ˆ k[53], r8 ˆ k[25], r9 ˆ k[33], r10 ˆ k[34], r11 ˆ k[17],
r12 ˆ k[5], &l23, &l15, &l29, &l5);

s4 (r11 ˆ k[4], r12 ˆ k[55], r13 ˆ k[24], r14 ˆ k[32], r15 ˆ k[40],
r16 ˆ k[20], &l25, &l19, &l9, &l0);

The full code goes on like this for almost 300 lines, while the Usuba equivalent is just
a few lines of code, very similar to the RECTANGLE code shown in Figure 1.1b. The
simplicity offered by Usuba does not come at any performance cost: both Kwan’s and
Usuba’s implementations exhibit similar throughput.

The bitslicing model can sometimes be too restrictive as it forbids the use of arithmetic
operations, and may fail to deliver optimal throughputs as it consumes a lot of registers.
To overcome these issues, and drawing inspiration from Käsper & Schwabe’s byte-sliced
AES [174], we propose a generalization of bitslicing that we dub mslicing. mslicing pre-
serves the constant-time property of bitslicing, while using less registers, and allowing
to use SIMD packed arithmetic instructions (e.g., vpaddb, vmuldp), as well as vector per-
mutations (e.g., vpshufb).



1.1. CONTRIBUTIONS 21

1.1 Contributions

We made the following contributions in this thesis:

• We designed Usuba, a domain-specific language for cryptography (Chapter 2).
Usuba enables a high-level description of symmetric ciphers by providing abstrac-
tions tailored for cryptography, while generating high-throughput code thanks to
its slicing model. We demonstrated the expressiveness and versatility of Usuba
on 17 ciphers (Section 2.4). Furthermore, we formalized Usuba’s semantics (Chap-
ter 3), thus enabling formal reasoning on the language, and paving the way towards
a verified compiler for Usuba.

• We developed Usubac, an optimizing compiler translating Usuba to C (Chapter 4).
It involves a combination of folklore techniques—such as inlining and unrolling—
tailored to the unique problems posed by sliced programs (Section 4.2) and intro-
duces new techniques—such as interleaving (Section 4.2.6) and sliced scheduling
(Section 4.2.5)—made possible by our programming model. We showed that on
high-end Intel CPUs, Usuba exhibits similar throughputs as hand-tuned imple-
mentations (Chapter 5).

• We integrated side-channel countermeasures in Usuba, in order to generate side-
channel resilient code for embedded devices. In particular, by leveraging recent
progress in provable security [53], we are able to generate implementations that are
provably secure against probing side-channel attacks (Chapter 6). We also imple-
mented a backend for SKIVA, thus producing code resilient to both power-based
side-channel attacks and fault injections (Chapter 7).
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1.2 Background

Usuba has two main targets: high-end CPUs, for which it generates optimized code,
and embedded CPUs, for which it generates side-channel resilient code. Several opti-
mizations are specifically tailored for Intel superscalar CPUs (Section 4.2), and our main
performance evaluation compares Usuba-generated ciphers against reference implemen-
tation on Intel CPUs (Chapter 5). In Section 1.2.1, we introduce the micro-architectural
notions necessary to understand this platform, as well as our benchmarking methodol-
ogy.

Section 1.2.2 and 1.2.3 present bitslicing and mslicing as data formats and their impact
on code expressiveness, performance, and compilation.

Finally, Section 1.2.5 compares the throughputs of performing a bitsliced and a msliced
addition. We provide a detailed analysis of the performance of both implementations,
which can be seen as a concrete example of the notions introduced in Section 1.2.1.

1.2.1 Skylake CPU

At the time of writing, the most recent Intel CPUs (Skylake, Kaby Lake, Coffee Lake) are
derived from the Skylake microarchitecture. The Skylake CPU (Figure 1.2) is a deeply
pipelined microarchitecture (i.e., it can contain many instructions at the same time, all
going through different execution phases). This pipeline consists of 2 main phases: the
frontend retrieves and decodes instructions in-order from the L1 instruction cache, while
the out-of-order execution engine actually executes the instructions. The instructions are
finally removed in-order from the pipeline by the retiring unit.

Note that this is a simplified view of the Skylake microarchitecture, whose purpose is
only to explain what matters to us, and to show which parts we will be focusing on when
designing our optimizations, and when analyzing the performance of our programs.

Frontend

The L1 instruction cache contains x86 instructions represented as a sequence of bytes.
Those instructions are decoded by the Legacy Decode Pipeline (MITE). The MITE oper-
ates in the following way:

• up to 16 bytes of instructions are fetched from the L1 instruction cache, and pre-
decoded into macro-ops.

• up to 6 macro-ops per cycle are delivered to the instruction queue (IQ), which per-
forms macro-fusion: some common patterns are identified and optimized by fusing
macro-ops together. For instance, an increment followed by a conditional jump, of-
ten found at the end of a loop, may fuse together in a single macro-op.

• the IQ delivers up to 5 macro-ops per cycle to the decoders. The decoders convert
each macro-ops into one or several µops, which are then sent to the Instruction
Decode Queue (IDQ).

The MITE is limited by the fetcher to 16 bytes of instructions per cycle. This translates
to 4 or 5 µops per cycle on programs manipulating integer registers, which is enough to
maximize the bandwidth of the pre-decoder and decoders. However, SSE, AVX and
AVX-512 instructions are often larger. For instance, an addition between two registers is
encoded on 2 bytes for integer registers, 4 bytes on SSE and AVX, and 6 bytes on AVX-
512. Therefore, on programs using SIMD extensions, the MITE tends to be limited by the
fetcher. In order to overcome this, the Decoded Stream Buffer (DSB), a µop cache, can be
used to bypass the whole MITE when dealing with sequences of instructions that have
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Figure 1.2: Skylake’s pipeline

already been decoded (for instance, in a tight loop). The DSB delivers up to 6 µops per
cycles, directly to the IDQ.

Execution Engine

The execution engine can be divided in 3 phases. The Allocate/Rename phase retrieves
µops from the IDQ and sends them to the Scheduler, which dispatches µops to the exe-
cution core. Once µops are executed, they are retired: all resources allocated to them are
freed, and the µops are effectively removed from the pipeline.

While assembly code can only manipulate 16 general purpose (GP) registers (e.g.,
rax, rdx) and 16 SIMD registers (e.g., xmm0, xmm1), the CPU has hundreds of registers
available. The renamer takes care of renaming architectural registers (i.e., registers ma-
nipulated by the assembly) into micro-architectural registers (the internal registers of the
CPU, also known as physical registers). The renamer also determines the possible exe-
cution ports for each instruction, and allocates any additional resources they may need
(e.g., buffers for load and store instructions).

The execution core consists of several execution units, each able to execute some spe-
cific type of µops, accessed through 8 ports. For instance:

• Arithmetic and bitwise instructions can execute on ports 0, 1 and 5 (and port 6 for
general-purpose registers).

• Branches can execute on ports 0 and 6.
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• Memory loads can execute on ports 2 and 3.

• Memory reads can execute on port 4.

The scheduler dispatches µops out-of-order to the execution units of the execution
core. When an instruction could be executed on several execution units, the scheduler
chooses one (the algorithm making this choice is not specified).

The instructions are then removed from the pipeline in-order by the retiring unit. All
resources allocated for them are freed, faults and exceptions are handled at that stage.

SIMD

SIMD (single instruction, multiple data) are CPU extensions that offer registers and instruc-
tions to compute the same operations on multiple data at once. Intel provides 4 main
classes of SIMD extensions: MMX with 64-bit registers, SSE with 128-bit registers, AVX
with 256-bit registers and AVX-512 with 512-bit registers. For the purposes of bitslicing,
MMX offers little to no benefits compared to general purpose 64-bit registers, and we
shall ignore them.

SSE, AVX and AVX-512 provide instructions to pack several 8-bit, 16-bit, 32-bit and
64-bit words inside a single register of 128 bits, 256 bits or 512 bits, thus producing a
vector. Figure 1.3a illustrates the function mm256 set epi64x, which packs 4 64-bit in-
tegers in a 256-bit AVX register. The term packed elements is used to refer to the individual
64-bit integers in the AVX registers.

SIMD extensions then provide packed instructions to compute over vectors, which we
divide in two categories. vertical m-bit instructions perform the same instruction over
multiple packed elements in parallel. If we visually represent SIMD registers as aggre-
gations of m-bit elements vertically stacked, vertical operations consist in element-wise
computations along this vertical direction. For instance, the instruction vpaddb (Fig-
ure 1.3b) takes two 256-bit AVX registers as parameters, each containing 32 8-bit words,
and computes 32 additions between them in a single CPU cycle. Similarly, the instruction
pslld (Figure 1.3c) takes a 128-bit SSE register containing 4 32-bit words, and an 8-bit
integer, and computes 4 left shifts in a single CPU cycle.

On the other hand, horizontal SIMD operations perform element-wise computations
within a single register, i.e., along the horizontal direction. For instance, the instruction
pshufd (Figure 1.3d) permutes the 4 32-bit packed elements of a SSE register (according
to a pattern specified by an 8-bit immediate).

Intel provides intrinsic functions that allow C code to use SIMD instructions. For
instance, the mm256 add epi8 intrinsic is compile into a vpaddb assembly instruction,
and mm sll epi32 is compiled into a pslld assembly instruction.

One straightforward application of SIMD extensions is to vectorize programs, that is,
to transform a program manipulating scalars into a functionally equivalent but faster
program manipulating vectors. For instance, consider the following C function, which
computes 512 32-bit additions between two arrays:

void add_512_integers(int* a, int* b, int* c) {
for (int i = 0; i < 512; i++) {

c[i] = a[i] + b[i];
}

}
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This function can be transformed into the following equivalent one:

void add_512_integers_vec(__m256i* a, __m256i* b, __m256i* c) {
for (int i = 0; i < 64; i++) {

c[i] = _mm256_add_epi32(a[i],b[i]);
}

}

The second one (add_512_integers_vec) manipulates 256-bit AVX registers (of type
__m256i), and uses the _mm256_add_epi32 intrinsic to perform 8 32-bit additions in par-
allel. The second one should divide by 8 the number of cycles required to perform 512
additions. Most C compilers (e.g., GCC, Clang, ICC) automatically try to vectorize loops
to improve performance. Some code cannot be vectorized however. For instance, con-
sider the following snippet:

void all_fibonacci(int* res, int n) {
res[0] = res[1] = 1;
for (int i = 2; i < n; i++) {

res[i] = res[i-1] + res[i-2];
}

}

Since each iteration depends on the number calculated at the previous iteration, this code
cannot be computed in parallel. Similarly, table lookups cannot be vectorized. Consider,
for instance:

void n_lookups(int* table, int* indices, int* res, int n) {
for (int i = 0; i < n; i++) {

res[i] = table[indices[i]];
}

}

Vectorizing this code would require a SIMD instruction to perform multiple memory
lookups in parallel, but no such instruction exists.

As shown in Figure 1.2, ports 0, 1, 5 and 6 of the CPU can compute bitwise and arith-
metic instructions, but only ports 0, 1 and 5 can compute SIMD instructions (“Vec ALU”).
This limits the potential speedup offered by SIMD extensions: add_512_integers_vec
should execute in 64/3 = 22 cycles, whereas add_512_integers should execute in 512/4 =
128 cycles, or 5.8 times more. AVX-512 restrict CPU usage even further: only 2 bit-
wise/arithmetic AVX-512 instructions can be executed per cycle.

New generations of SIMD offer more than simply twice larger registers. For instance,
one of the additions of AVX extensions is 3-operand non-destructive instructions. SSE
bitwise and arithmetic instructions take two registers as arguments, and override one of
them with the result (i.e., a SSE xor will compute x ˆ= y). On the other hand, AVX
instructions set a third register with their output (e.g., an AVX xor will compute x = y
ˆ z). Another example is AVX512 extensions, which provide 32 registers, whereas AVX
and SSE extensions only provide 16.

Generations of SIMD. Several generations of SSE extensions have been released by
Intel (SSE, SSE2, SSSE3, SSE4.1, SSE4.2), each introducing new instructions. Similarly,
the AVX2 extensions improve upon AVX by providing many useful operations, includ-
ing 8/16/32-bit additions and shifts. Whenever we mention SSE (resp., AVX) without
specifying which version, we refer to SSE4.2 (resp., AVX2).
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Micro-Benchmarks

Intel gives access to a Time Stamp Counter (TSC) through the rdtscp instruction. This
counter is incremented at a fixed frequency, regardless of the frequency of the CPU core
clock (and, in particular, is not affected by Turbo Boost, which increases the frequency
of the core clock). On both Intel CPUs we used in this thesis (i5-6500 and Xeon W-
2155), the TSC frequency is very close to the core frequency: on the i5-6500, the TSC
frequency is 3192MHz and the core frequency is 3200Mhz, and on the W-2155, the TSC
frequency is 3299MHz and the core frequency is 3300MHz. We can thus use this counter
to approximate the number of clock cycles taken by a given code to execute. In order to
keep the TSC frequency and core frequency correlated, we disabled Turbo Boost.

Figure 1.4a provides the C benchmark code we used throughout this thesis to bench-
mark some arbitrary function run bench. Some components of the CPU go through a
warm-up phase during which they are not operating at peak efficiency. For instance,
according to Fog [138], parts of the SIMD execution units are turned off when unused.
As a result, the first instruction using AVX registers takes between 150 and 200 cycles
to execute, and the following instructions using AVX registers are 4.5 times slower than
normal for about 56.000 clock cycles. 2.7 million clock cycles after the last AVX instruc-
tion, parts of the SIMD execution units will be turned back off. In order to prevent those
factors from impacting our benchmarks, we include a warm-up phase, running the target
code without recording its run time. In Figure 1.4a, the warm-up loop performs 100.000
iterations, which ensures that SIMD extensions are fully powered.

1 extern void run_bench();
2
3 int main() {
4 // Warm-up
5 for (int i = 0; i < 100000; i++) {
6 run_bench();
7 }
8
9 // Actual benchmark

10 unsigned int unused;
11 uint64_t timer = __rdtscp(&unused);
12 for (int i = 0; i < 1000000; i++) {
13 run_bench();
14 }
15 timer = __rdtscp(&unused) - timer;
16
17 // Outputting result
18 printf("%.2f cycles/iteration\n", timer/1000000);
19 }

(a) Core of our generic benchmark code (C)

for my $i (0 .. 29) {
$times_a[$i] = system "./bench_a";
$times_b[$i] = system "./bench_b";

}
printf "bench_a: %.2f // bench_b: %.2f\n",

average(@times_a), average(@times_b);

(b) Wrapper for our benchmarks (Perl)

Figure 1.4: Our benchmark code
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registers

(a) Bitslicing layout

input stream 0 1 0 0 0 1 1 1 0 0 1 1

0 1 0 1
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registers

(b) Computing on bitsliced data

Figure 1.5: Bitslicing example with 3-bit data and 4-bit registers

While the code from Figure 1.4a provides a fairly accurate cycle count for a given
function, other programs running on the same machine may impact its run-time. In order
to alleviate this issue, we repeated each measurement 30 times, and took the average of
the measurements (Figure 1.4b).

To compare performance results, we use the Wilcoxon rank-sum test [300] (also called
Mann-Whitney U test), which assesses whether two distributions are significantly dis-
tinct. Every speedup and slowdown mentioned in this thesis are thus statistically signif-
icant. For instance, Table A.4 (Page 196) shows some ×1.01 speedups and ×0.99 slow-
downs, all of which are significant.

Intel provides hundreds of counters to monitor the execution of a program. For in-
stance, the number of read and writes to the caches, the number of cache misses and hits,
the number of cycles where 1, 2, 3 or 4 µops were executed, the number of cycles where
the frontend did not dispatch µops, the number of instructions executed each cycles
(IPC). To collect such counters, we use the perf utility [4], and vtune software [164].

1.2.2 Bitslicing

The general idea of bitslicing is to transpose m n-bit data into n m-bit registers (or vari-
ables). Then, standard m-bit bitwise operations of the CPU can be used and each acts as
m parallel operation. Therefore, if a cipher can be expressed as a combination of bitwise
operations, it can be ranm times in parallel using bitslicing. A bitsliced program can thus
be seen as a combinational circuit (i.e., a composition of logical operations) implemented
in software.

Figure 1.5a illustrates bitslicing on 3-bit inputs, using 4-bit registers (for simplicity). 3
registers are required to bitslice 3-bit data: the first bit of each input goes into the first reg-
ister; the second bit into the second register and the third bit into the third register. Once
the data has this representation, doing a xor (or any other bitwise operation) between
two registers actually computes 4 independent xors (Figure 1.5b).
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Scaling

SIMD instructions, presented in Section 1.2.1, offer large registers (up to 512 bits) and op-
erations to perform data-parallel computation on those registers. Bitslicing being parallel
by construction, it is always possible to make use of SIMD instructions sets to increase the
throughput of a bitsliced program. As for general-purpose registers, a bitsliced program
will only require SIMD bitwise instructions, such as vpandd that computes 512 bitwise
1-bit ands in parallel (Figure 1.6).

512 bits

vpandd

AVX-512 
registers

A & B

B

A

Figure 1.6: The AVX-512 vpandd instruction

Executing a bitsliced program on 512-bit registers will compute the same circuit on
512 independent data in parallel, thus dividing by 8 the number of cycles compared to
64-bit registers. On the other hand, the overall time needed to execute the circuit, and
thus the latency, remains constant no matter the registers used: encrypting 64 inputs in
parallel on 64-bit registers, or encrypting 512 inputs in parallel on 512-bit registers will
take roughly the same amount of time.

Finally, to make full use of SIMD extensions, hundreds of inputs must be available to
be encrypted in parallel. For instance, on AES, which encrypts a 128-bit plaintext, 8 KB
of data are required in order to fill 512-bit AVX-512 registers.

Modes of Operation

A block cipher can only encrypt a fixed amount of data (a block). The size of a block
is generally between 64 and 128 bits (e.g., 64 bits for DES and 128 bits for AES). When
the plaintext is longer than the block size, the cipher must be repeatedly called until the
whole plaintext is encrypted, using an algorithm called a mode of operation. The simplest
mode of operation is Electronic Codebook (ECB, Figure 1.7a). It consists in dividing
the plaintext into sub-plaintexts (of the size of a block), encrypting them separately, and
concatenating the resulting sub-ciphertext to produce the full ciphertext.

This mode of operation is considered insecure because identical blocks will be en-
crypted into the same ciphertext. This can be exploited by an attacker to gain knowledge
about the plaintext. Figure 1.8 illustrates the weaknesses of ECB: the initial image (Fig-
ure 1.8a) encrypted using AES in ECB mode results in Figure 1.8b, which clearly reveals
information about the initial image.

Counter mode (CTR) is a more secure parallel mode that works by encrypting a
counter rather than the sub-plaintexts directly (Figure 1.7b). It then xors the encrypted
counter with the sub-plaintext. Encrypting the image from Figure 1.8a with this mode
produces a seemingly random image (Figure 1.8c). Incrementing the counter can be done
in parallel using SIMD instructions:
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(a) Electronic codebook (ECB) mode
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(b) Counter (CTR) mode
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sub-plaintext 0

sub-ciphertext 0

key

initialization 
vector

cipher cipher
●      ●      ●

key key

sub-plaintext 1

sub-ciphertext 1 sub-ciphertext n
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(c) Cipher block chaining (CBC) mode

Mode Encryption Decryption Secure
ECB parallel parallel 7

CTR parallel parallel 3

CBC sequential parallel 3

(d) Qualitative comparison of ECB, CBC and CTR

Figure 1.7: Some common modes of operation
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(a) Source image

(b) Image encrypted using ECB

(c) Image encrypted using CTR

!
The sources of this experiment are available at:
https://github.com/DadaIsCrazy/usuba/tree/master/
experimentations/ecb_vs_ctr

Figure 1.8: ECB vs. CTR

https://github.com/DadaIsCrazy/usuba/tree/master/experimentations/ecb_vs_ctr
https://github.com/DadaIsCrazy/usuba/tree/master/experimentations/ecb_vs_ctr
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// Load 4 times the initial counter in a 128-bit SSE register
__m128i counters = _mm_set1_epi32(counter);
// Load a SSE register with integers from 1 to 4
__m128i increments = _mm_set_epi32(1, 2, 3, 4);
// Increment each element of the counters register in parallel
counters = _mm_add_epi32(counters, increments);
// |counters| can now be transposed and encrypted in parallel

CTR can thus be fully parallelized and therefore allows bitslicing to maximize parallelism
and register usage.

Another commonly used mode is Cipher Block Chaining (CBC, Figure 1.7c), which
solves the weakness of ECB by xoring each sub-plaintext with the sub-ciphertext pro-
duced by the encryption of the previous sub-plaintext. This processed is bootstrapped
by xoring the first sub-plaintext with an additional secret data called an initialization
vector.

However, because bitslicing encrypts many sub-plaintexts in parallel, it prevents the
use of CBC, as well as any other mode that would rely on using a sub-ciphertext as
an input for encrypting the next sub-plaintext (like Cipher Feedback and Output Feed-
back). To take advantage of bitslicing in such sequential modes, we can multiplex en-
cryptions from multiple independent data streams, at the cost of some management over-
heads [148].

Compile-time Permutations

A desirable property of ciphers is diffusion: if two plaintexts differ by one bit, then sta-
tistically half of the bits of the corresponding ciphertexts should differ. In practice, this
property is often achieved using permutations. For instance, Piccolo [277] uses an 8-bit
permutation (Figure 1.9). A naive, non-bitsliced C implementation of this permutation
would be:

char permut(char x) {
return ((x & 128) >> 6) |

((x & 64) >> 2) |
((x & 32) << 2) |
((x & 16) >> 2) |
((x & 8) << 2) |
((x & 4) >> 2) |
((x & 2) << 2) |
((x & 1) << 6);

}

A clever developer (or compiler) could notice that the three right-shifts by 2 can be
merged together: ((x & 64) >> 2) | ((x & 16) >> 2) | ((x & 4) >> 2) can be
optimized to (x & (64 | 16 | 4)) >> 2. The same goes for the three left-shifts by 2,
and the permutation can therefore be written as (with the masks written in binary for
more simplicity):

char permut(char x) {
return ((x & 0b10000000) >> 6) |

((x & 0b01010100) >> 2) |
((x & 0b00101010) << 2) |
((x & 0b00000001) << 6);

}

In bitslicing, each bit is stored in a different variable, so this permutation consists in 8
static assignments:
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X₀ X₁ X₂ X₃ X₄ X₅ X₆ X₇

y₀ y₁ y₂ y₃ y₄ y₅ y₆ y₇

Figure 1.9: Piccolo’s round permutation

void permut(bool x0, bool x1, bool x2, bool x3,
bool x4, bool x5, bool x6, bool x7,
bool* y0, bool* y1, bool* y2, bool* y3,
bool* y4, bool* y5, bool* y6, bool* y7) {

*y0 = x2;

*y1 = x7;

*y2 = x4;

*y3 = x1;

*y4 = x6;

*y5 = x3;

*y6 = x0;

*y7 = x5;
}

The C compiler can inline this function, and get rid of the assignments by doing copy
propagation, effectively performing the permutation at compile time. This technique can
be applied to any bit-permutation, as well as shifts and rotations, thus reducing their
runtime cost to zero.

Lookup Tables

Another important property of ciphers is confusion: each bit of a ciphertext should de-
pend on several bits of the encryption key, so as to obscure the relationship between the
two. Most ciphers achieve this property using functions called S-boxes (for substitution-
boxes), often specified using lookup tables. For instance, RECTANGLE uses the following
lookup table:

char table[16] = {
6 , 5, 12, 10, 1, 14, 7, 9,
11, 0, 3 , 13, 8, 15, 4, 2

};

This lookup table is said to be a 4 × 4 table: it needs 4 bits to index its 16 elements, and
returns integers on 4 bits (0 to 15). Such tables cannot be used in bitslicing, since each bit
of the index would be in a different register. Instead, equivalent circuits can be used, as
illustrated in Section 1.0.1. A circuit equivalent to the lookup table of RECTANGLE is:
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void table(bool a0, bool a1, bool a2, bool a3,
bool* b0, bool* b1, bool* b2, bool* b3) {

bool t1 = ˜a1;
bool t2 = a0 & t1;
bool t3 = a2 ˆ a3;

*b0 = t2 ˆ t3;
bool t5 = a3 | t1;
bool t6 = a0 ˆ t5;

*b1 = a2 ˆ t6;
bool t8 = a1 ˆ a2;
bool t9 = t3 & t6;

*b3 = t8 ˆ t9;
bool t11 = *b0 | t8;

*b2 = t6 ˆ t11;
}

Using 64-bit variables (uint64 t in C) instead of bool allows this code to compute
the S-box 64 times in parallel. Bitslicing then becomes more efficient than direct code:
accessing to a value in the original table will take about 1 cycle (assuming a cache hit),
while doing the 12 instructions from the circuit above should take 12 cycles (or even less
on a superscalar CPU) to compute 64 times the S-box (on 64-bit registers), thus costing at
most 0.19 cycles per S-box.

Converting a lookup table into a circuit can be easily done using Karnaugh maps [172]
or binary decision diagrams [197]. However, this tends to produce large circuits. Brute-
forcing every possibility is unlikely to yield any results, as even a small 4×4 S-box usually
requires a circuit of about 12 instructions, and hundreds of billions of such circuits exist.
Heuristics can be added to the brute-force search in order to reduce the complexity of the
search [234], but this does not scale well beyond 4 × 4 S-boxes. For large S-boxes, like
the 8×8 AES S-box, cryptographers exploit the underlying mathematical structure of the
S-boxes to optimize them [96, 91]. Such a task is hard to automate, yet it is essential to
obtain good performance on bitsliced ciphers.

Constant-time

Bitslicing makes it impossible to (efficiently) branch on secret data, since within a single
register, each bit represents a different input. In particular, the branch condition could
be, at the same time, true for some inputs, and false for others. Thus, both branches of
conditionals need to be computed, and combined by masking with the branch condition.
For instance, the following branching code (assuming x, a, b, c, d and e are all Boolean,
for the sake of simplicity):

if (x) {
a = b;

} else {
a = c ˆ d ˆ e;

}

would be implemented in a bitsliced form as:

a = (x & b) | (˜x & (c ˆ d ˆ e));

If x is a secret data, the branching code is vulnerable to timing attacks: it runs faster if x is
true than if it is false. An attacker could observe the execution time and deduce the value
of x. On the other hand, the bitsliced code executes the same instructions independently
of the value of x and is thus immune to timing attacks. For large conditionals, this would
be expensive, since it requires computing both branches instead of one. However, this is
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not an issue when implementing symmetric cryptographic primitives, as they rarely—if
ever—rely on conditionals.

The lack of branches is not sufficient to make a program constant-time: memory ac-
cesses based on secret indices could be vulnerable to cache-timing attacks (presented in
Section 1.0.1). However, as shown in the previous section, bitslicing prevents such mem-
ory accesses by replacing lookup tables by constant-time circuits.

Since they prevent both conditional branches based on secret data, and memory ac-
cesses based on secret data, bitsliced programs are constant-time by construction.

Transposition

Transposing the data from a direct representation to a bitsliced one is expensive. Naively,
this would be done bit by bit, using the following algorithm for a matrix of 64 64-bit
registers (a similar algorithm can be used for any matrix size):

void naive_transposition(uint64_t data[64]) {
// transposing |data| in a local array
uint64_t transposed_data[64] = { 0 };
for (int i = 0; i < 64; i++) {

for (int j = 0; j < 64; j++) {
transposed_data[j] |= ((data[i] >> j) & 1) << i;

}
}
// copying the local array into |data|, thus transposing |data| in-place
memcpy(data, transposed_data, 64 * sizeof(uint64_t));

}

This algorithm does 4 operations per bit of data (a left-shift <<, a right-shift >>, a
bitwise and & and a bitwise or |), thus having a cost in O(n) where n is the size in bit
of the input. Given that modern ciphers can have a cost as low as half a cycle per byte
(CHACHA20 on AVX-512, for instance), spending 1 cycle per bit (8 cycles per byte) trans-
posing the data would make bitslicing too inefficient to be used in practice. However,
this transposition algorithm can be improved (as shown by Knuth [184], and explained
in detail by Pornin [248]) by observing that the transpose of a matrix can be recursively
written as: [

A B
C D

]T
=

[
AT CT

BT DT

]
until we are left with matrices of size 2 × 2 (on a 64x64 matrix, this takes 6 iterations).
Swapping B and C is done with shifts, ors, and ands. The key factor is that when doing
this operation recursively, the same shifts/ands/ors are applied at the same time on A
and B, and on C and D, thus saving a lot of operations compared to the naive algorithm.

Example 1.2.1. Let us consider a 4 × 4 matrix composed of 4 4-bit variables U, V, W and
X. The first step is to transpose the 2 × 2 sub-matrices (corresponding to A, B, C and
D above). Since those are 2 × 2 matrices, the transposition involves no recursion (Fig-
ure 1.10a). Transposing A and B is done with the same operations: & 0b1010 isolates
the leftmost bits in both A and B at the same time; << 1 shifts the rightmost bits of both
A and B at the same time, and the final or recombines both A and B at the same time.
The same goes for C and D. The individual transpose of B and C can then be swapped in
order to finalize the whole transposition (Figure 1.10b).

When applied to a matrix of size n×n, this algorithm performs log(n) recursive steps
to get to 2 × 2 matrices, each of them doing n operations to swap sub-matrices B and C.
The total cost is therefore O(n log n) for a n × n matrix, or O(

√
n log n) for n bits. On a
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Figure 1.10: Optimized transposition of a 4× 4 matrix

modern Intel CPU (e.g., Skylake), this amounts to 1.10 cycles per bits on a 16x16 matrix,
down to 0.09 cycles per bits on a 512x512 matrix [212].

Furthermore, in a setting where both the encryption and decryption are bitsliced,
transposing the data can be omitted altogether. Typically, this could be the case when
encrypting a file system [248].

Arithmetic Operations

Bitslicing prevents from using CPU arithmetic instructions (addition, multiplication etc.),
since each n-bit number is represented by 1 bit in n distinct registers. Instead, bitsliced
programs must re-implement binary arithmetic, using solely bitwise instructions. As we
will show in Section 1.2.5, using bitslicing to implement additions is 2 to 5 times slower
than using native CPU add instructions, and multiplication would be much slower. We
are not aware of any bitsliced implementation of a cipher that simulates arithmetic oper-
ations in this way.
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1.2.3 mslicing

Bitslicing can produce high-throughput cipher implementations through data-parallelism.
However, it suffers from a few limitations:

• bitslicing requires a lot of independent inputs to be efficient, since throughput is
achieved by encrypting multiple inputs in parallel (m parallel inputs on m-bit reg-
isters).

• bitsliced code uses hundreds of variables, which puts a lot of pressure on the reg-
isters, which causes spilling (moving data back-and-forth between registers and
memory), thus reducing performance.

• bitslicing cannot efficiently implement ciphers which rely heavily on arithmetic op-
erations, like CHACHA20 [61] and THREEFISH [136].

To overcome the first two issues, Käsper and Schwabe [174] proposed a ”byte-sliced”
implementation of AES. Bitslicling would represent the 128-bit block of AES as 1 bit in
128 registers. Instead, Käsper and Schwabe proposed to represent the 128-bit block as 16
bits in 8 registers. Using only 8 registers greatly reduces register pressure and allows AES
to be implemented without any spilling. Furthermore, this representation requires fewer
inputs to fill the registers and thus maximize throughput: only 8 parallel AES inputs are
required to fill up 128-bit SSE registers (against 128 with bitslicing).

We define mslicing as a generalization of bitslicing, where a n-bit input is split into k
bits inm registers (such that k×m = n). The special casem = 1 corresponds to bitslicing.
When k (the number of bits in each register) is greater than one, there are two possible
ways to arrange the bits within each register: they can either be stored contiguously, or
they can be spread across each packed element. The first option, which we call vslicing,
will enable the use of vertical instructions (e.g., 16-bit addition), while the second option,
which we call hslicing, will enable the use of permutation instructions (e.g., pshufb).

Vertical Slicing

Rather than considering the bit as the atomic unit of computation, one may use m-bit
words as such basis (m being a word size supported by the SIMD architecture). On Intel
(SSE/AVX/AVX512), m can be 8, 16, 32, or 64. We can then exploit vertical m-bit SIMD
instructions to perform logic as well as arithmetic in parallel.

This technique, which we call vertical slicing (or vslicing for short), is similar to the
notion of vectorization in the compilation world. Compared to bitslicing, it puts less pres-
sure on registers, and requires less parallel data to fill the registers. Furthermore, it can
be used to implement arithmetic-based ciphers (like CHACHA20), which cannot be im-
plemented efficiently in bitslicing.

However, permutations are costly in vslicing. Applying an arbitrary bit-permutation
to the whole block requires using shifts and masks to extracts bits from the registers and
recombine them, as shown in Section 1.2.2.

Example 1.2.2 (vsliced RECTANGLE). The RECTANGLE cipher [309] (Figure 1.1, Page 19)
encrypts a 64-bit input. We can split this input into 4 16-bit elements, and store them in
the first 16-bit packed elements of 4 SSE registers (Figure 1.11a). Then, applying the same
principle as bitslicing, we can fill the remaining empty elements of these SSE registers
with independent inputs (Figures 1.11b and 1.11c), until the registers are full (in the case
of RECTANGLE on 128-bit SSE registers, this is achieved with 8 inputs).

vsliced RECTANGLE can be efficiently computed in parallel. The S-box is a sequence
of bitwise and, xor, not and or between each of these SSE registers, and is thus efficient
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Figure 1.11: Data layout of vsliced RECTANGLE
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Figure 1.12: Data layout of hsliced RECTANGLE
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Figure 1.13: A left-rotation using a shuffle

in bitslicing and vslicing. The permutation can be written as three left-rotations, each one
operating on a different SSE register. While the SSE extension does not offer a rotation
instruction, it can be emulated using two shifts and an or. This is slightly more expensive
than the bitsliced implementation of RECTANGLE, which can perform this permutation
at compile time. However, the reduced register pressure more than compensate for this
loss, as we shall demonstrate in our evaluation (Section 5.3).

Horizontal Slicing

Rather than considering a m-bit atom as a single packed element, we may also dispatch
itsm bits intom distinct packed elements, assuming thatm is less or equal to the number
of packed elements of the architecture. Using this representation, we lose the ability to
perform arithmetic operations but gain the ability to perform arbitrary shuffles of our m-
bit word with a single instruction (Figure 1.3d, Page 25). This style exploits on horizontal
SIMD operations.

We call this technique horizontal slicing, or hslicing for short. Like vslicing, it lowers
register pressure compared to bitslicing, and requires fewer inputs to fill the registers.
While vslicing shines where arithmetic operations are needed, hslicing is especially use-
ful to implement ciphers that rely on intra-register permutations, since those can be per-
formed in a single shuffle instruction. This includes RECTANGLE’s permutations, which
can be seen as left-rotations, or Piccolo’s permutation (Figure 1.9, Page 33).

Permutations mixing bits from distinct registers, however, will be expensive, as they
will require manually extracting bits from different registers and recombining them.

Example 1.2.3 (hsliced RECTANGLE). On RECTANGLE, the 64-bit input is again seen as 4
times 16 bits, but this time, each bit goes to a distinct packed element (Figure 1.12a). Once
again, there are unused bits in the registers, which can be filled with subsequent inputs.
The second input would go into the second bits of each packed element (Figure 1.12b).
Like for vslicing, this is repeated until the registers are full, which in the case of RECT-
ANGLE on SSE requires a total of 8 inputs. Numbering the bits from 0 (most significant)
to 63 (least significant) can help visualize the hslicing data layout (Figure 1.12c): the 8-bit
element labeled i contains the i-bit of each of the 8 inputs.

RECTANGLE’s S-box, composed solely of bitwise instructions, can be computed using
the same instructions as the vsliced implementation. The permutation, however, can
be done even more efficiently than in vslicing, using shuffle instructions. For instance,
Figure 1.13 shows how a shuffle can perform the first left-rotation of RECTANGLE’s linear
layer: given the right pattern, the pshufb instruction acts as a byte-level rotation of a
SSE register.
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bitslicing hslicingvslicing

Figure 1.14: Slicing layouts

1.2.4 Bitslicing vs. vslicing vs. hslicing

Terminology. Whenever the slicing direction (i.e., vertical or horizontal) is unimpor-
tant, we talk about mslicing (assuming m > 1) and we call slicing the technique encom-
passing both bitslicing and mslicing.

Figure 1.14 provides a visual summary of all slicing forms using RECTANGLE as an
example. All these slicing forms share the same basic properties: they are constant-time,
they rely on data-parallelism to increase throughput, and they use some sort of trans-
position to convert the data into a layout suitable to their model. However, each slicing
form has its own strengths and weaknesses:

• transposing data to hslicing or vslicing usually has a cost almost negligible com-
pared to a full cipher, while a bitslice transposition is much more expensive.

• bitslicing introduces a lot of spilling, thus reducing its potential performance, un-
like hslicing and vslicing.

• only vslicing is a viable option on ciphers using arithmetic operations, since it can
use SIMD arithmetic instructions. As shown in Section 1.2.5, trying to implement
those instructions in bitslicing (or hslicing) is suboptimal.

• bitslicing provides zero-cost permutations, unlike hslicing and vslicing, since it al-
lows to perform any permutation at compile-time. Intra-register permutations can
still be done at run time with a single instruction in hslicing using SIMD shuffle
instructions.

• bitslicing requires much more parallel data to reach full throughput than hslicing
and vslicing. On RECTANGLE, for instance, 8 independent inputs are required to
maximize the throughput on SSE registers using mslicing, while 128 inputs are
required when using bitslicing.

• both vslicing and hslicing rely on vector instructions, and are thus only available
on CPUs with SIMD extensions, while bitslicing does not require any hardware-
specific instructions. On general-purpose registers, bitslicing is thus usually more
efficient than mslicing.
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The choice between bitslicing, vslicing and hslicing thus depends on both the cipher
and the target architecture. For instance, on CPUs with SIMD extensions, the fastest
implementations of DES are bitsliced, the fastest implementations of CHACHA20 are
vsliced, while the fastest AES implementations are hsliced. Even for a given cipher, some
slicings might be faster depending on the architecture: on x86-64, the fastest implemen-
tation of RECTANGLE is bitsliced, while on AVX, vslicing is ahead of both bitslicing and
hslicing. If we exclude the cost of transposing the data, then hsliced and vsliced imple-
mentations of RECTANGLE have the same throughput.

Statically estimating which slicing mode is the most efficient for a given cipher is
non-trivial, especially on complex CPU architectures. Instead, Usuba allows to write
code that is polymorphic on the slicing types (when possible), making it easy to switch
from a slicing form to another, and thus measure relative performance.

1.2.5 Example: Bitsliced adders

!
The benchmarks of this section are available at:
https://github.com/DadaIsCrazy/usuba/tree/master/
experimentations/add

A bitsliced adder can be implemented using bitwise operations. The simplest adder is
the ripple-carry adder, which works by chaining n full adders to add two n-bit numbers.
Figure 1.15a illustrates a full adder: it takes two 1-bit inputs (A and B) and a carry (Cin),
and returns the sum of A and B (s) as well as the new carry (Cout). A ripple-carry can
then be implemented using a chain of full adders (Figure 1.15b).

Various techniques exist to build more efficient hardware adders than the carry-ripple
adder (e.g., carry-lookahead), but none applies to software implementations.

A software implementation of a n-bit carry-ripple adder thus contains n full adders,
each doing 5 operations (3 xor and 2 and), for a total of 5n instructions. Since bitslicing
still applies, such a code executes m additions at once when ran on m-bit registers (e.g.,
64 on 64-bit registers, 128 on SSE registers). The cost to do one n-bit addition is therefore
5n/m bitwise operations. On a high-end CPU, this adder is unlikely to execute in exactly
n ∗ 5 cycles. The number of registers, the superscalarity, and L1 data-cache latency will
all impact performance.

In order to evaluate such a bitsliced adder, we propose to compare it with native
packed addition instructions on SSE and AVX registers (i.e., instructions that would be
used for vslicing). SSE (resp., AVX) addition instructions do k n-bit additions with a
single instruction: 16 (resp., 32) 8-bit additions, or 8 (resp., 16) 16-bit additions, or 4
(resp., 8) 32-bit additions, or 2 (resp., 4) 64-bit additions.

1.2.6 Setup

We consider 3 different additions for our evaluation:

• a bitsliced ripple-carry adder. Three variants are used: 8-bit, 16-bit and 32-bit. Since
they contain 5 ∗ n instructions, we could expect the 32-bit adder to run in twice
more cycles than the 16-bit adder, which itself would run in twice more cycle than
8-bit one. However, the larger the adder, the higher the register pressure. Our
benchmark aims at quantifying this effect.

• a packed addition done using a single CPU instruction. For completeness, we con-
sider the 8, 16 and 32-bit variants of the addition; all of which should have the
same throughput and latency on general purpose (GP) registers. GP registers do
not offer packed operations, and can therefore only do a single addition with an

https://github.com/DadaIsCrazy/usuba/tree/master/experimentations/add
https://github.com/DadaIsCrazy/usuba/tree/master/experimentations/add
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add instruction. SSE (resp., AVX) on the other hand, can 4 (resp., 8) 32-bit, or 8
(resp., 16) 16-bit or 16 (resp., 32) 8-bit additions with a single packed instruction,
which increases throughput without changing latency.

• 3 independent packed additions done with 3 CPU instructions operating on in-
dependent registers. Doing a single packed addition per cycle under-utilizes the
superscalar capabilities of modern CPUs. Since up to 3 SSE or AVX additions (or
4 GP additions, since port 6 of the Skylake CPU can execute GP arithmetic and
bitwise instructions but not SIMD instructions) can be done each cycle, this bench-
mark should show the maximum throughput achievable by native add instruc-
tions. Once again, we consider the 8, 16 and 32-bit variants, on SSE, AVX and GP.
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(b) Ripple-carry adder

node full_adder(a,b,c_in:b1) returns (s,c_out:b1)
let

s = (a ˆ b) ˆ c_in;
c_out = ((a ˆ b) & c) ˆ (a & b);

tel

node 32bit_ripple_carry(a,b:b32) returns (s:b32)
vars c:b1
let

c = 0;
forall i in [0, 31] {

(s[i],c) := full_adder(a[i],b[i],c);
}

tel

(c) 32-bit ripple-carry adder in Usuba

Figure 1.15: Circuits for some adders
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Addition type
Cycles/iteration

AVX SSE GP
8-bit bitslice 12.19 14.78 16.30

8-bit packed single 1.01 1.00 1.00
8-bit packed parallel 1.00 1.00 1.00

16-bit bitslice 30.93 33.34 34.60
16-bit packed single 1.00 1.00 1.00

16-bit packed parallel 1.00 1.00 1.00
32-bit bitslice 76.17 74.78 74.93

32-bit packed single 1.00 1.00 1.00
32-bit packed parallel 1.00 1.00 1.00

(a) Latency
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Figure 1.16: Comparison between bitsliced adder and native addition instructions

We compiled our C code using Clang 7.0.0. We tried using GCC 8.3.0, but it has a
hard time with instruction scheduling and register allocations, especially within loops,
and thus generates suboptimal code. We ran the benchmarks on a Intel Skylake i5-6500.

1.2.7 Results

We report in Figure 1.16 the latency in cycles per iteration (Figure 1.16a) and throughput
cycles per addition (Figure 1.16b). bitslice corresponds to the bitsliced addition using
a ripple-carry adder. native single corresponds to the single addition done using
a native packed instruction. native parallel corresponds to the three independent
native packed additions.
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Figure 1.17: Scaling of bitsliced adders on SIMD

Single Native Packed Addition (native single)

According to Intel’s manual, additions (SSE, AVX and GP) should execute in one cycle.
There should be no overhead from the loop: looping requires incrementing a counter and
doing a conditional jump. Those two instructions get macro-fused together and execute
on port 0 or 6. The SSE and AVX additions can execute on either port 0, 1 or 5, and can
thus be done at the same time as the loop increment/jump.

Experimentally, we achieve a latency of 1 cycle/iteration, regardless of the size of the
addition (8-bit, 16-bit or 32-bit). On GP registers, this means a throughput of 1 addition
per cycle. On SSE (resp., AVX) registers, however, a single packed padd (resp., vpadd)
instruction performs multiple additions, thus reducing the cost per addition: 0.25 (resp.,
0.13) cycles for 32-bit, 0.13 (resp., 0.06) cycles for 16-bit and 0.06 (resp., 0.03) cycles for
8-bit.

Parallel Native Packed Parallel Additions (native parallel)

Since SSE and AVX addition can execute on either port 0, 1 or 5, three of them could be
done in a single cycle, provided that they do not suffer from data dependencies (i.e., none
uses the output of another one). The increment and jump of the loop would fuse and be
executed on port 6, independently of the additions.

Once again, this corresponds to the numbers we observe experimentally: 1 cycle/iter-
ation regardless of the size of the addition. On GP, SSE and AVX registers, 3 additions are
executed per cycle, which translates into three times the throughput of native single.

Bitsliced Addition (bitslice)

Recall that the n-bit ripple-carry adder contains n full-adders. In practice, 3 operations
can be omitted from the first full-adder, since it always receives a 0 as input carry. Like-
wise, 3 more operations can be saved from the last full-adder, since its output carry is
never used and does not need to be computed. We did not have to implement those
optimizations by hand since Clang is able to find them by itself. The total numbers of
operations of this n-bit ripple-carry adder is therefore n × 5 − 6. Those operations are
solely bitwise instructions, which can be executed on ports 0, 1 and 5 on SSE and AVX
registers (and on port 6 as well on GP registers). This adder is therefore bound to run in
at least (n × 5 − 6)/3 cycles on SSE and AVX registers, and (n × 5 − 6)/4 cycles on GP
registers.
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In practice, this number can never be reached because a full-adder contains inner data
dependencies that prevent it from executing at a rate of 3 instructions per cycle. How-
ever, when computing consecutive full-adders, a full-adder can start executing before
the previous one is done, thus bypassing this dependency issue. The limiting factor then
becomes the CPU scheduler, which cannot hold arbitrarily many µops, and limits the
out-of-order execution. The larger the adder, the more full-adders (and thus µops) they
contain, and the more the scheduler will be saturated.

Figure 1.17 shows the minimal theoretical speed ((n ∗ 5 − 6)/3 cycles) and the mea-
sured speed on SSE and AVX of ripple-carry adders depending on their sizes (from 4-bit
to 64-bit). Small adders (around 4-bit) almost reach their theoretical minimal speeds.
However, the larger the adders, the slower they get compared to the theoretical opti-
mum. This is partly because of their inner dependencies, as mentioned above, but also
due to spilling. Indeed, a bitsliced n-bit adder has n ∗ 2 inputs, n outputs, and n ∗ 5
temporary variables. Even though most of the temporary variables are short-lived, the
register pressure remains high: there are only 16 SSE registers available and 14 GP regis-
ters (since one register is always kept for the stack pointer, and another one to store the
loop counter). Without surprises, the larger the adders, the more registers they need, and
the more they suffer from spilling.

Especially on small adders, AVX instructions are faster than SSE, because the latter
use destructive 2-operand instructions, while the former use non-destructive 3-operand
instructions. When computing a bitsliced SSE adder, some variables must therefore be
saved (using a mov) before being overwritten with a new result. Even though moves exe-
cute on ports 2, 3 and 4, whereas bitwise instructions use ports 0, 1 and 5, this introduces
data dependencies, and is enough to slightly slow down the SSE adders compared to the
AVX adders.

Since the CPU can do 4 GP bitwise instructions per cycle, and only 3 SSE and AVX,
the GP adders should be faster than the SSE and AVX ones. However, the SSE and AVX
adders use 16 registers, while the GP ones use only 14 registers (recall that two GP regis-
ters are reserved). This causes the GP adders to do more spilling than the SSE and AVX
ones. Furthermore, the inner dependencies of the adders are the same regardless of the
registers used. Since the SSE and AVX adders struggle to fully saturate 3 ports, the GP
adders have an even harder time to saturate 4 ports. Overall, this causes AVX, SSE and
GP adders to have similar execution time.

Conclusion On general-purpose registers, using bitslicing can improve the speed of
small additions: an 8-bit bitsliced adder is twice faster than native add instructions.
However, when SIMD extensions are available, bitslicing becomes 2 to 6 times slower
than native instructions. The decision to emulate addition in bitslicing should therefore
depend on both the size of the addition and the architecture.
Furthermore, the other parts of the ciphers will also influence this decision: a program
mixing additions and permutations might be a good target for bitslicing, while a pro-
gram containing solely additions is unlikely to be a good candidate for bitslicing.
On the other hand, it would be pointless to emulate multiplication this way: a multi-
plier requires at least n2 instructions (whereas an adder only requires n× 5), making the
resulting program prohibitively expensive.
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1.3 Conclusion

In this chapter, we motivated the need for domain-specific languages for cryptography, in
order to automate the generation of efficient and secure cryptographic implementations.
We showed how bitslicing can be used to achieve both: high throughput is achieved
through data parallelization, and security against timing attack is achieved through con-
stant time.
To overcome several limitations of bitslicing (e.g., high latency, high register pressure), we
proposed a generalized mslicing model, which often delivers higher throughputs that bit-
slicing, in addition to being able to support arithmetic-based ciphers (unlike bitslicing).
Bitslicing and mslicing are able to fully exploit SIMD extensions of modern CPUs, which
offer large registers (up to 512 bits), and can thus be used to provide high-throughput
implementations of cryptographic primitives.

1.3.1 Related Work

Constant-time Cryptography

Sliced programs are constant-time by construction. However, not all cryptographic code
can be sliced: slicing imposes data parallelization (to be efficient) and cannot efficiently
compute conditionals (which are common in public-key cryptography). Several methods
are used in cryptography to ensure constant-time in situations where slicing cannot be
used.

Empirical Evaluation. Several tools allow to empirically check whether a piece of code
runs in constant time. ctgrind [195] uses a modified version of Valgrind’s Memcheck tool,
which, instead of detecting (among other things) branches on uninitialized memory or
accesses to uninitialized memory, detects branches on secret data and accesses to secret
data (using a taint-tracking analysis where only secret inputs are initially tainted).

dudect [259] measures the execution times of a code with different inputs, and checks
whether the timing distributions are statistically different: if so, then the code likely has
a timing leak. Repeating this process many times allows to increase the confidence in the
lack (or presence) of timing leaks.

ct-fuzz [160] relies on coverage-based greybox fuzzy testing to detect timing leaks.
Their approach is based on self-composition: several copies of a program are executed
in isolation with different inputs, and the traces (control flow, memory accesses) are
recorded. If the traces are distinguishable, then a timing leak exists. Coverage-based
greybox fuzzy testing is used to generate random inputs by mutating previously ex-
plored inputs. This allows ct-fuzz to achieve a similar result as dudect, albeit with fewer
false positives, since ct-fuzz does not record timings but rather execution traces.

Static Analysis. Rather than empirically checking whether a code is seemingly constant-
time, several approaches have been proposed to statically determine whether a piece of
code is constant-time.

CacheAudit [130] uses abstract interpretation to detect cache-timing leaks. Similarly,
tis-ct [163], inspired by ctgrind, leverages the Frama-C static analyzer to perform a depen-
dency analysis in C code to detect timing leaks. FlowTracker [269], on the other hand,
relies on an analysis of the SSA graph to track data dependencies and detect potential
timing leaks. Several type systems have been proposed to ensure constant-time and de-
tect timing leaks [42, 223, 297]. Finally, several approaches to detect timing leaks using
self-composition (statically, unlike ct-fuzz) have also been proposed [16, 17].

More recently, Barthe et al. [45] proposed a modified version of CompCert [199] that
preserves constant-time. They extended CompCert’s semantics to include the notion
and leakage, and modified the existing proofs of semantics preservation to cover timing
leakages.
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Source-to-source Transformation. Going further than simply detecting timing leaks,
several tools have been developed to automatically transform arbitrary code into constant-
time code.

Both Barthe et al. [40] and Molnar et al. [217] proposed generic transformations to re-
move control-flow based timing leaks based by computing both branches of conditionals.
The former is a generic approach which relies on a transaction mechanism: conditionals
are replaced by transactions, which are committed or aborted depending on the value of
the condition. The latter is lower-level, and proposes the program counter security model,
which considers an attacker that knows which instruction is being executed at any time.
In this model, they propose program transformations to ensure that the information pro-
vided by the current value of the program counter does not reveal sensitive data. Cop-
pens et al. [114] later improved on [217] by implementing a similar method directly as an
LLVM backend in order to prevent the compiler from introducing timing leaks, and by
dealing with conditional function calls and memory accesses.

SC-Eliminator [304], implemented as an LLVM pass, improves on the aforementioned
techniques by removing cache-leaks as well as control-flow leaks. First, a static sensitiv-
ity analysis detects timing leaks by propagating sensitivity from secret inputs to other
variables: a branch on a sensitive value, or a memory lookup on a sensitive index are
considered to introduce a leak. A second pass then removes those leaks: both branches
of conditionals are computed (and the result is selected in constant time), and preloading
is used to mitigate cache-timing leaks.

Similarly, FaCT [100, 99] is a DSL providing high-level constructions and a dedicated
compiler to remove any potential timing leaks. However, since FaCT generates LLVM
bytecode, there is a risk that LLVM may break FaCT’s constant-time guarantees. In the
hope of detecting any timing leaks introduced by LLVM, FaCT uses dudect to ensure that
the code thus generated is (empirically) constant-time.

Bitslicing Outside of Cryptography

The earliest use of the term bit slicing was to describe a technique to implement n-bit pro-
cessors from components with smaller bit-width [215]. For instance, a 16-bit arithmetic
logic unit (ALU) can be made from four 4-bit ALU (plus some additional machinery for
carries). Although this technique is different from what we call bistlicing in this thesis,
it is related: our bitslicing views a n-bit CPU as n 1-bit CPU, whereas this hardware bit
slicing builds a n-bit CPU from n 1-bit components. This technique is, however, not used
in large-scale manufactured processors (e.g., Intel and ARM), even though some recent
works suggest that it can be exploited to implement rapid single-flux-quantum (RSFQ)
microprocessors [288].

Bitslicing has also been used as a data storage layout in order to speed up scans in
databases, under the names “Bit-Slicing” [231] and “Vertical Bit-Parallel” [202]. SIMD
vectorizations, similar to vslicing, have also been proposed to accelerate scans in com-
pressed databases [301].

Maurer and Schilp [208] proposed to use of bitslicing to speed up software simulation
of hardware: bitslicing allows to simulate a circuit on multiple inputs (e.g., 32 on a 32-bit
CPU) at once.

Xu and Gregg [305] developed a compiler to generate bitsliced code for custom pre-
cision floating-point arithmetic, whose use-cases include in particular image processing.
Kiaei and Schaumont [178] proposed a technique to synthesize general-purpose bitsliced
code in order to speed up time-sensitive embedded applications.



Chapter 2

Usuba, Informally

The design of Usuba is driven by a combination of algorithmic and hardware-specific
constraints: implementing a block cipher requires some discipline to achieve high through-
put and avoid timing attacks.

Usuba must be expressive enough to describe hardware-oriented ciphers, such as
DES or TRIVIUM, which are specified in terms of Boolean operations. For instance, the
first operation of DES is defined as a 64-bit bit-level permutation (Figure 2.1). To account
for such ciphers, Usuba provides abstractions to manipulate bitvectors, such as extract-
ing a single bit as well as splitting or combining vectors.

Usuba must also be able to describe software-oriented ciphers specified in terms of
affine transformations, such as AES. For instance, MixColumns, one of the underlying
functions of AES, is defined as a matrix multiplication in GF (28) (Figure 2.2). To account
for such ciphers, Usuba handles the matricial structure of each block of data, allowing
bit-level operations to carry over such structured types while driving the compiler into
generating efficient SIMD code. Altogether, Usuba provides a vector-based program-
ming model, allowing us to work at the granularity of a single bit while providing static
type-checking and compilation to efficient code.

Usuba programs are also subject to architecture-specific constraints. For instance, a
cipher relying on 32-bit multiplication is but a poor candidate for bitslicing: this multipli-
cation would turn into a prohibitively expensive multiplier circuit simulated in software.
Similarly, a cipher relying on 6-bit arithmetic would be impossible to execute in vertical
slicing: the SIMD instruction sets manipulate bytes as well as 16-bit, 32-bit and 64-bit
words, leaving aside such an exotic word size. We are therefore in a rather peculiar situ-
ation where, on the one hand, we would like to implement a cipher once, while, on the
other hand, the validity of our program depends on a combination of slicing mode and
target architecture.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

12 34 56 78 910 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 3132 3334 3536 3738 3940 4142 4344 4546 4748 4950 5152 5354 5556 5758 5960 6162 6364

Figure 2.1: DES’s initial permutation
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Figure 2.2: AES’s MixColumns matrix multiplication

How can we, at compile time, provide meaningful feedback to the Usuba program-
mer so as to (always) generate high-throughput code? We address this issue by intro-
ducing a type for structured blocks (Section 2.1) upon which we develop a language
(Section 2.2) supporting parametric polymorphism (for genericity) and ad-hoc polymor-
phism (for architecture-specific code generation) as well as a type system (Section 2.3)
ensuring that ”well-typed programs do always vectorize”. Overall, this chapter provides
an intuitive introduction to Usuba, leaving the formalism to Chapter 3.

2.1 Data Layout

Our basic unit of computation is the block, i.e., a bitvector of statically-known length. To
account for its matricial structure and its intended parallelization, we introduce the type
uDm× n (written u<D>mxn in Usuba source code) to denote n ∈ N∗ registers of unsigned
m-bit words (m ∈ N∗ and “u” stands for “unsigned”) that we intend to parallelize using
vertical (D = V) or horizontal (D = H) SIMD instructions. A single m-bit value is thus
typed uDm× 1, abbreviated uDm. This notation allows us to unambiguously specify the
data layout of the blocks processed by the cipher.
Note that directions collapse in the case of bitslicing, i.e., uV1×m ∼= uH1×m. Both cases
amount to the same layout, or put otherwise: vertical and horizontal slicing are two
orthogonal generalizations of bitslicing.

Example 2.1.1. Consider the 64-bit input block of the RECTANGLE cipher (Figure 2.3a).
Bitsliced RECTANGLE manipulates blocks of type uD1× 64, i.e., each bit is dispatched to
an individual register (Figure 2.3b). A 16-bit vertical slicing implementation of RECTAN-
GLE manipulates blocks of type uV16× 4, i.e., each one of the 4 sub-blocks is dispatched
to the first 16-bit element of 4 registers (Figure 2.3c, where the double vertical lines rep-
resent the end of each 16-bit packed elements). Horizontally sliced RECTANGLE has type
uH16× 4, i.e., each 16-bit word is horizontally spread across each of the 16 packed ele-
ments of 4 SIMD registers (Figure 2.3d).

For a given data layout, throughput is maximized by filling the remaining bits of the
registers with subsequent blocks of the input stream, following the same pattern. Thus,
16-bit SIMD addition (e.g., vpaddw on AVX) in vertical slicing will amount to performing
an addition on 8 blocks in parallel. We emphasize that the types merely describe the
structure of the blocks, and do not enforce the architecture to be used. An Usuba program
only specifies the treatment of a single slice, from which Usuba’s compiler automatically
generates code to maximize register usage. Transposing a sequence of input blocks in a
form suitable for parallel processing (i.e., vsliced, hsliced or bitsliced) is fully determined
by its type.
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Figure 2.3: RECTANGLE’s sliced data layouts

2.2 Syntax & Semantics, Informally

In and of itself, Usuba is an unsurprising dataflow language [98, 6]. Chapter 3 formally
describes its semantics and type-system. In this section, in order to give some intuition
of the language, we illustrate its syntax and semantics through examples, in particular
RECTANGLE (Figure 1.1, Page 19). In the following, we shall leave types and typing aside,
coming back to this point in the next section.

Nodes. An Usuba program is composed of a totally ordered set of nodes (SubColumn,
ShiftRows and Rectangle in the case of RECTANGLE). The last node plays the role
of the main entry point: it will be compiled to a C function. The compiler is free to
compile internal nodes to functions or to inline them. A node consists of an unordered
system of equations involving logic and arithmetic operators. The semantics is defined
extensionally as a solution to the system of equations, i.e., an assignment of variables to
values such that all the equations hold.

Usuba also provides syntactic sugar for declaring lookup tables, useful for specifying
S-boxes. RECTANGLE’s S-box (SubColumn) can thus be written as:

table SubColumn (in:v4) returns (out:v4) {
6 , 5, 12, 10, 1, 14, 7, 9,
11, 0, 3 , 13, 8, 15, 4, 2

}

Conceptually, a lookup table is an array: a n-bit input indexes into an array of 2n

possible output values. However, to maximize throughput and avoid cache timing at-
tacks, the compiler expands lookup tables to Boolean circuits. For prototyping pur-
poses, Usuba uses an elementary logic synthesis algorithm based on binary decision di-
agrams (BDD)—inspired by Pornin [248]—to perform this expansion. The circuits gen-
erated by this tool are hardly optimal: finding optimal representations of S-boxes is a
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full-time occupation for cryptographers, often involving months of exhaustive search
[191, 96, 293, 234]. Usuba integrates these hard-won results into a database of known
circuits, which is searched before trying to convert any lookup table to a circuit. For in-
stance, RECTANGLE’s S-box (SubColumn) is replaced by the compiler with the following
node (provided by Zhang et al. [309]):

node SubColumn (a:v4) returns (b:v4)
vars t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12 : v1
let

t1 = ˜a[1];
t2 = a[0] & t1;
t3 = a[2] ˆ a[3];
b[0] = t2 ˆ t3;
t5 = a[3] | t1;
t6 = a[0] ˆ t5;
b[1] = a[2] ˆ t6;
t8 = a[1] ˆ a[2];
t9 = t3 & t6;
b[3] = t8 ˆ t9;
t11 = b[0] | t8;
b[2] = t6 ˆ t11

tel

Bit-permutations are commonly used in cryptographic algorithms to provide diffu-
sion. Usuba offers syntactic support for declaring bit-permutations. For instance, the
initial permutation of DES (Figure 2.1) amounts to the following declaration that speci-
fies which bit of the input bitvector should be routed to the corresponding position of the
output bitvector:

perm init_p (a:b64) returns (out:b64) {
58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7

}

It should be read as ”the 1st bit of the output is the 58th bit of the input, the 2nd bit of
the output is the 50th of the input, etc.”. The direct bitsliced translation of this permuta-
tion is a function of 64 Boolean inputs and 64 Boolean outputs, which consists of simple
assignments: out[0] = a[58]; out[1] = a[50]; .... After Usuba’s copy propaga-
tion pass (Section 4.2.2), a bit-permutation is thus no more than a (static) renaming of
variables.

Finally, Usuba also offers a way to define arrays of nodes, tables or permutations. For
instance, the SERPENT [78] cipher uses a different S-box for each round, all of which can
be grouped into the same array of tables:

table[] sbox(input:v4) returns (out:v4) [
{ 3, 8,15, 1,10, 6, 5,11,14,13, 4, 2, 7, 0, 9,12 } ;
{15,12, 2, 7, 9, 0, 5,10, 1,11,14, 8, 6,13, 3, 4 } ;
{ 8, 6, 7, 9, 3,12,10,15,13, 1,14, 4, 0,11, 5, 2 } ;
{ 0,15,11, 8,12, 9, 6, 3,13, 1, 2, 4,10, 7, 5,14 } ;
{ 1,15, 8, 3,12, 0,11, 6, 2, 5, 4,10, 9,14, 7,13 } ;
{15, 5, 2,11, 4,10, 9,12, 0, 3,14, 8,13, 6, 7, 1 } ;
{ 7, 2,12, 5, 8, 4, 6,11,14, 9, 1,15,13, 3,10, 0 } ;
{ 1,13,15, 0,14, 8, 2,11, 7, 4,12,10, 9, 3, 5, 6 }

]

Calling, for instance, the 3rd S-box of this array can be done using the syntax x = sbox<3>(y).
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Vectors. Syntactically, our treatment of vectors stems from the work on hardware syn-
thesis of synchronous dataflow programs [268]. Given a vector x of size n, we can obtain
the element x[k] at position 0 ≤ k < n, the consecutive elements x[k..l] in the range
0 ≤ k < l < n and a slice of elements x[l] where l is a list of integers k0, ..., kJ respecting
0 ≤ k1 < n, ..., 0 ≤ kJ < n. This syntax is instrumental for writing concise bit-twiddling
code. Indices must be known at compile-time, since variable indices could compromise
the constant-time property of the code. The type-checker can therefore prevent out-of-
bounds accesses. Noticeably, vectors are maintained in a flattened form. Given two
vectors x and y of size, respectively, m and n, the variable z = (x, y) is itself a vector of
size m + n (not a pair of vectors). Conversely, for a vector u of size m + n, the equation
(x, y) = u stands for x = u[0..n] and y = u[n..m+ n].

Loops. To account for repetitive definitions (such as the wiring of the 25 rounds of
RECTANGLE), the forall construct lets us declare a group of equations within static
bounds. Its semantics is intuitively defined by macro-expansion: we can always translate
it into a chunk of interdependent equations. In practice, Usuba’s compiler preserves this
structure in its pipeline (Section 4.1.3). SERPENT’s main loop for instance is:

state[0] = plaintext;
forall i in [0,30] {

state[i+1] = linear_layer(sbox<i%8>(state[i] ˆ keys[i]))
}

Each of the 31 iteration computes a round of SERPENT: it xors the result of the previous
round (state[i]) with the key for this round (keys[i]), then calls the S-box for this
round (sbox<i%8>), and finally calls the node linear_layer and stores the result in
state[i+1] for the next round.

Imperative assignment. Some ciphers (e.g., CHACHA20, SERPENT) are defined in an
imperative manner, repetitively updating a local state. Writing those ciphers in a syn-
chronous dataflow language can be tedious: it amounts to writing code in static single
assignment (SSA) form. To simplify such programs, Usuba provides an assignment op-
erator x := e (where x may appear free in e). It desugars into a standard equation with
a fresh variable on the left-hand side that is substituted for the updated state in later
equations. For instance, SERPENT’s linear layer can be written as:

node linear_layer(x:u32x4) returns (out:u32x4)
let

x[0] := x[0] <<< 13;
x[2] := x[2] <<< 3;
x[1] := x[1] ˆ x[0] ˆ x[2];
x[3] := x[3] ˆ x[2] ˆ (x[0] << 3);
x[1] := x[1] <<< 1;
x[3] := x[3] <<< 7;
x[0] := x[0] ˆ x[1] ˆ x[3];
x[2] := x[2] ˆ x[3] ˆ (x[1] << 7);
x[0] := x[0] <<< 5;
x[2] := x[2] <<< 22;
out = x

tel

which desugars to:
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node linear_layer(x:u32x4) returns (out:u32x4)
vars t0, t1, t2, t3, t4, t5, t6, t7, t8, t9: u32
let

t0 = x[0] <<< 13;
t1 = x[2] <<< 3;
t2 = x[1] ˆ t0 ˆ t1;
t3 = x[3] ˆ t1 ˆ (t0 << 3);
t4 = t2 <<< 1;
t5 = t3 <<< 7;
t6 = t0 ˆ t4 ˆ t5;
t7 = t1 ˆ t5 ˆ (t4 << 7);
t8 = t6 <<< 5;
t9 = t7 <<< 22;
out = (t8, t9, t4, t5);

tel

Operators. The constructs introduced so far deal with the wiring and structure of the
dataflow graph. To compute, one must introduce operators. Usuba supports bitwise
logical operators (conjunction &, disjunction |, exclusive-or ˆ and negation ˜), arith-
metic operators (addition +, multiplication * and subtraction -), shifts (left << and right
>>), and rotations (left <<< and right >>>). Additionally, a shuffle operator performs
intra-register bit shuffling. A pack operator packs two values of type ui and uj into
a value of type uk such that i + j = k. Finally, a bitmask extract a mask made of
zeros or ones depending on the value of the nth bit of an expression. For instance,
bitmask(2,1) = 0xffff, and bitmask(2,0) = 0 (for 16-bit values). The availability
and exact implementation (especially, run-time cost) of the operators depend on the slic-
ing mode and the target architecture.

2.3 Types

Base types. For the purpose of interacting with its cryptographic runtime, the interface
of a block cipher is specified in terms of the matricial type uDm× n, which documents the
layout of blocks coming in and out of the cipher. A tuple of n elements of types τ1, ..., τn is
of type (τ1, ..., τn). We also have general vectors whose types are τ [n], for any type τ and
n a (static) natural number. Consider, for example, the subkeys used by vsliced RECT-
ANGLE: they are presented as an object key of type uV 16× 4[26], which is 26 quadruples
of 16-bit words. The notation uDm× 4[26] indicates that accesses must be performed in
column-major order, i.e., as if we were accessing an object of type uDm[26][4] (following
C conventions). This apparent redundancy is explained by the fact that types serve two
purposes. In the surface language, matricial types (uDm× 4) document the data layout.
In the target language, the matricial structure is irrelevant: an object of type uDm× 4[26]
supports exactly the same operations as an object of type uDm[26][4]. Surface types are
thus normalized, after type-checking, into distilled types. A value of type uDm× 1 (for
any D and m) is called an atom, and its type is said to be atomic.

Parametric polymorphism. A final addition to our language of types is the notion of
parametric word size and parametric direction. A cipher like RECTANGLE can in fact be
sliced horizontally or vertically: both modes of operation are compatible with the various
SIMD architectures introduced after SSSE3. Similarly, the node SubColumn amounts to
a Boolean circuit whose operations (&, |, ˆ and ˜) are defined for any atomic word size
(ranging from a single Boolean to a 512-bit AVX512 register): SubColumn thus applies to
uD1, uD8, etc.
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Nodes being first-order functions, a function type is (at most) rank-1 polymorphic:
the polymorphic parameters it may depend on are universally quantified over the whole
type (and node body). We use the abbreviation bn (n bits) and um (unsigned integer of
size m) for the type u‘D1× n and, respectively, u‘Dm where ‘D is the direction parameter
in the nearest scope. Similarly, we write vn for u‘D ‘m × nwhen ‘m is the nearest word size
parameter.

When compiling a program whose main is direction polymorphic, the flag -V or -H
must be passed to the compiler to instruct it to specialize the direction for vslicing or
hslicing. Similarly, if the main is word size polymorphic, the flag -m m must be passed
to the compiler to specialize the word size of the main to m bits.

Example 2.3.1 (Polymorphic direction). This ShiftRows node of RECTANGLE is defined
as follows:

node ShiftRows (input:u16[4]) returns (out:u16[4])
let

out[0] = input[0];
out[1] = input[1] <<< 1;
out[2] = input[2] <<< 12;
out[3] = input[3] <<< 13

tel

We leave its direction polymorphic (u16 is shorthand for u‘D16), as the left-rotation on
16-bit words is defined for both hslicing and vslicing.

Example 2.3.2 (Polymorphic word size). The CHACHA20 cipher relies on a node that
computes additions, xors, and left rotations:

node QR (a,b,c,d:u<V>m)
returns (aR,bR,cR,dR:u<V>m)

let
a := a + b;
d := (d ˆ a) <<< 16;
c := c + d;
b := (b ˆ c) <<< 12;
aR = a + b;
dR = (d ˆ aR) <<< 8;
cR = c + dR;
bR = (b ˆ cR) <<< 7;

tel

Since additions can only be used in vertical slicing, we can explicitely type this node
with the slicing direction V. However, the additions and left-rotations are defined for 8-
bit, 16-bit, 32-bit and 64-bit integers, and xors are defined for any word size. The word
size can thus be left polymorphic. However, note that the CHACHA20 cipher itself is not
word-size polymorphic: its specification explicitly uses 32-bit integers, and the Usuba
implementation (Figure 2.10, Page 66) thus uses uV 32 values.
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Logic(τ) :
& :τ → τ → τ
| :τ → τ → τ
ˆ :τ → τ → τ
˜ :τ → τ

Shufflel[τ ] :
shufflel : τ → τ

Arith(τ) :
+ :τ → τ → τ

* :τ → τ → τ
- :τ → τ → τ

Bitmaskn[τ ] :
bitmaskn : τ → τ

Shiftn[τ ] :
>>n :τ → τ
<<n :τ → τ
>>>n :τ → τ
<<<n :τ → τ

Pack(τ1, τ2, τ3) :
pack : τ1 → τ2 → τ3

Figure 2.4: Usuba’s type-classes

Example 2.3.3 (Polymorphic word size and direction). This SubColumn node of RECT-
ANGLE is defined as follows:

node SubColumn (a:v4) returns (b:v4)
vars t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12 : v1
let

t1 = ˜a[1];
t2 = a[0] & t1;
t3 = a[2] ˆ a[3];
b[0] = t2 ˆ t3;
t5 = a[3] | t1;
t6 = a[0] ˆ t5;
b[1] = a[2] ˆ t6;
t8 = a[1] ˆ a[2];
t9 = t3 & t6;
b[3] = t8 ˆ t9;
t11 = b[0] | t8;
b[2] = t6 ˆ t11

tel

We leave both its word size and direction polymorphic (v4 is shorthand for u‘D ‘m × 4),
as it contains only bitwise operations, which are defined for any word size and slicing
direction.

Ad-hoc polymorphism. In reality, few programs are defined for any word size or any
direction. Also, no program is absolutely parametric in the word size: we can only com-
pute up to the register size of the underlying architecture.

To capture these invariants, we introduce a form of bounded polymorphism through
type-classes [296]. Whether a given cipher can be implemented over a collection of word
size and/or direction is determined by the availability of logical and arithmetic opera-
tors. We therefore introduce six type-classes for logical, arithmetic and shift/rotate oper-
ations, as well as shuffles, bitmasks and packs (Figure 2.4)

Shifts are parameterized by a natural number describing the amount to shift by. For
instance, the operation x << 4 is represented as <<4 x. Similarly, bitmasks are param-
eterized by a natural number corresponding to the bit to extract from the argument, and
shuffles are parameterized by a list of natural numbers representing the pattern to use
for the shuffle.

The implementation of the type classes depends on the type considered and the tar-
get architecture. An example is arithmetic on 13-bit words, which is impossible, even in
vertical mode. Another example is the shift operation: shifting a tuple amounts to re-
naming registers whereas shifting a scalar in horizontal mode requires an actual shuffle
instruction. We chose to provide instances solely for operations that can be implemented
statically or with a handful of instructions, with the exceptions of shuffle, which is
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Table 2.1: Operator instances.

Class Instances Architecture Compiled with

Logic(τ)
Logic(τ)⇒ Logic(τ [n])

for n ∈ N all homomorphic application (n instr.)

Logic(u‘Dm) for m ∈ [1, 64] ≥ x86-64

and, or, etc. (1 instr.)
Logic(u‘Dm) for m ∈ [65, 128] ≥ SSE

Logic(u‘Dm) for m ∈ [129, 256] ≥ AVX
Logic(u‘Dm) for m ∈ [257, 512] ≥ AVX512

Arith(τ)

Arith(τ)⇒ Arith(τ [n])
for n ∈ N all homomorphic application (n instr.)

Arith(uV8)

all add, vpadd, vpsub, etc. (1 instr.)
Arith(uV16)
Arith(uV32)
Arith(uV64)

Shiftn[τ ]

Shiftn[τ [m]] for m ∈ N, 0 ≤ n ≤ m all variable renaming (0 instr.)
Shiftn[uV‘m],
Shiftn[uH‘m]

⇒ Shiftn[u‘D ‘m] all depends of instance

Shiftn[uV16] for n ∈ [0, 15]
all vpsrl/vpsll (≤ 3 instr.)Shiftn[uV32] for n ∈ [0, 31]

Shiftn[uV64] for n ∈ [0, 63]
Shiftn[uH2] for n ∈ [0, 1]

≥ SSE
vpshuf (1 instr.)

Shiftn[uH4] for n ∈ [0, 3]
Shiftn[uH8] for n ∈ [0, 7]

Shiftn[uH16] for n ∈ [0, 15]
Shiftn[uH32] for n ∈ [0, 31] ≥ AVX512
Shiftn[uH64] for n ∈ [0, 63]

Shufflel[τ ]

∀D,m, l,Shufflel[uDm] =⇒ |l| = m ∧ ∀n ∈ l, 0 ≤ n < m
Shufflel[uV8] x86-64

Shufflel[uV16]
all

vpsrl/vpsll/vpand/vpxor
Shufflel[uV32] (many instr.)
Shufflel[uV64]
Shufflel[uH2]

≥ SSE
vpshuf (1 instr.)

Shufflel[uH4]
Shufflel[uH8]

Shufflel[uH16]
Shufflel[uH32] ≥ AVX512
Shufflel[uH64]

Bitmaskn[τ ]

Bitmaskn[uV8] for n ∈ [0, 7]

all
srl+and+sub

vpsrl+vpand+vpsub etc.
(3 instr.)

Bitmaskn[uV16] for n ∈ [0, 15]
Bitmaskn[uV32] for n ∈ [0, 31]
Bitmaskn[uV64] for n ∈ [0, 63]

Pack(τ1, τ2, τ3)
Pack(uVi, uVj, uVk)
i+ j = k ∧ k ≤ 64

all
sll+or/vpsll+vpor etc.

(2 instr.)

made available in vertical mode despite its large cost. Our type-class mechanism is not
user-extensible. The list of all the possible type-classes instances is fixed and given in Ta-
ble 2.1. This set of instances is obviously non-overlapping so our overloading mechanism
is coherent: if the type-checker succeeds in finding an instance for the target architecture,
then that instance is unique.

Both logical and arithmetic operators can be applied to a tuple of size n, in which
case they amount to n element-wise applications of the operator on each element of
the tuple. Shifting a tuple, on the other hand, is performed at the granularity of the
elements of the tuple, and amounts to statically renaming variables and shifting in ze-
ros. For instance, if we consider a vector x of type b1[4], x << 2 is equivalent to
(x[0], x[1], x[2], x[3]) << 2, which is reduced at compile time to (x[2], x[3],0,
0) (with the last two 0 being of type b1).

Logic instructions can be applied on any non-tuple type for any slicing, as long as
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the architecture offers large enough registers. Arithmetic instructions on non-tuple types
are only valid for vslicing, and require some support from the underlying architecture.
In practice, SSE, AVX, AVX2 and AVX512 offer instructions to compute 8-bit, 16-bit, 32-
bit and 64-bit arithmetic operations. Vertical shifts of 16-bit, 32-bit and 64-bit values use
CPU shift instructions (vpsrl and vpsll on AVX2, shr and shl on general purpose
x86). Shifts in horizontal slicing are compiled using shuffle instructions (e.g., vpshufd,
vpshufb). For instance, consider a variable x of type u16: shifting right this variable
by 2 is done using the shuffle pattern [-1,-1,15,14,13,12,11,10,9,8,7,6,5,4,3,2]

(-1 in the pattern causes a 0 to be introduced). SIMD registers older than AVX512 only
offer shuffles for up to 16 elements, while AVX512 does also provide 32 and 64 elements
shuffle, thus allowing us to compile 64-bit shifts. Shuffle instruction in horizontal mode
map naturally to SIMD shuffle instructions. On the other hand, shuffle instructions in
vertical mode are compiled to shifts moving each bit in a register. For instance, shuffling
a variable x of type u8 with the pattern [5,2,0,1,7,6,4,3] produces the following
code:

((x << 5) & 128) ˆ
((x << 1) & 64) ˆ
((x >> 2) & 32) ˆ
((x >> 2) & 16) ˆ
((x >> 3) & 8) ˆ
((x << 1) & 4) ˆ
((x >> 2) & 2) ˆ
((x >> 4) & 1)

Since SIMD instructions do not offer 8-bit shifts, 8-bit shuffles in vertical mode are
only available on x86-64. Shuffles of 16, 32 and 64 bits can, on the other hand, be compiled
for SIMD architectures. Shuffles are expensive in vertical mode, but we chose to support
them nonetheless since some commonly used ciphers rely on them, such as AES.

An instruction bitmask(x,n) is compiled to -((x >> n) & 1), thus leveraging
two’s complement arithmetic to build the mask: (x >> n) & 1 is 0 if the nth bit of x
is 0, and 1 otherwise. Doing -0 returns 0 (i.e., an empty mask), while doing -1 returns an
integer full of ones (i.e., 0xff on 8 bits, 0xffff on 16 bits etc.).

Finally, pack is simply compiled to a left-shift of its first operand and combines it
with the second one using an or. Pack cannot be used to combined values whose total
size would be more than 64 bits because the shift instructions provided by the architec-
tures we target operate on at most 64-bit integers (even on SIMD extensions).

We now illustrate how type-classes enable ad-hoc polymorphism on a few examples.

Example 2.3.4.

node f(x:u16, y:u16) returns (z:u16)
let

z = x + y;
tel

All parameters of f are direction polymorphic. The Arith type-class defines the ad-
dition for any type τ (Figure 2.4). During type-checking, a constraint will therefore be
added on this node that the architecture must provide a instance of the addition of type
u‘D16 → u‘D16 → u‘D16, for some universally-quantified direction ‘D . When specializing
this node for a slicing direction (H or V), the type of the parameters becomes uH16 or
uV 16, and the corresponding instance of the addition is looked up in the Arith type-class
(Table 2.1). Since Arith does not provide an instance of the addition for hslicing, this node
cannot be hsliced. This node can, however, be vsliced, in which case the compilation of
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the addition will depend on the architecture. For instance, on AVX2, vpaddw will be
used to compute the (vectorized) 16-bit addition.

Example 2.3.5.

node g(a:v1[5], b:u<V>32, c:u<H>8)
returns (x:v1[5], y:u<V>32, z:u<H>8)

let
x = a <<< 3;
y = b <<< 3;
z = c <<< 3;

tel

In this node, a and x are direction polymorphic and word size polymorphic vectors,
while b and y (resp., c and z) are 32-bit vsliced (resp., 8-bit hsliced) words. The Shift type-
class defines the left-rotation as having type τ → τ , for any type τ (Figure 2.4). The type-
checker will thus add as constraints on this node that the architecture must provide 3
instances of left-rotation: one of type u‘D ‘m[5]→ u‘D ‘m[5] (for some universally-quantified
‘D and ‘m), another one of type uV 32 → uV 32, and a final one of type uH8 → uH8. The
compiler will then specialize each rotations with the instance provided by the Shift type-
class (Table 2.1). The first one is turned into to a tuple assignment (x = (a[3], a[4],
a[0], a[1], a[2])), regardless of the architecture and the slicing and word-size use
to specialize ‘D and ‘m . The compilation of the second and third one depends on the
architecture. On AVX2, for instance, the vsliced left-rotation is compiled to a vpslld,
and the hsliced left-rotation is compiled to a vpshufb.
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2.4 Applications

We implemented 17 ciphers in Usuba: ACE [7], AES [230], ASCON [126], CAMELLIA [21],
CLYDE [55], DES [230], GIFT [29], GIMLI [67], PHOTON [153], PRESENT [85], PYJAMASK [151],
RECTANGLE [309], SERPENT [78], SKINNY [50], SPONGENT [86], SUBTERRANEAN [122]
and XOODOO [120].

! The Usuba implementations of these ciphers are available on GitHub at:
https://github.com/DadaIsCrazy/usuba/tree/master/samples/usuba

In this section, we comment the source code of 5 ciphers (AES, ASCON, ACE, CHACHA20
and SERPENT), taking this opportunity to explain their algorithm. Specifically, we chose
these 5 ciphers for the following reasons. AES is by far the most widely used symmetric
cipher. CHACHA20 is a commonly used stream cipher, designed to be efficient on SIMD
architectures, and is one of the few ciphers relying on additions. SERPENT is one of the
few ciphers to use a different S-boxes for each round. Finally, ACE and ASCON are two
recent ciphers, candidates to the NIST Lightweight Cryptography (LWC) Standardiza-
tion competition [227], showing that Usuba applies on 40-year-old ciphers (e.g., DES) as
well as on recent ones.

2.4.1 AES

The Advanced Encryption Standard (AES), also known as Rijndael [119], was chosen by
the NIST in 2001 to replace DES as the standard for encrypting data. Its Usuba imple-
mentation is shown in Figure 2.5.

AES’s state is 128-bit wide, represented as 4x4 matrix of 8-bit elements:

a₀,₀ a₀,₁ a₀,₂ a₀,₃

a₁,₀ a₁,₁ a₁,₂ a₁,₃

a₂,₀ a₂,₁ a₂,₂ a₂,₃

a₃,₀ a₃,₁ a₃,₂ a₃,₃

with the original input being 16 bytes in the following order:

[ a0,0, a1,0, a2,0, a3,0, a0,1, a1,1, a2,1, ..., a1,3, a2,3, a3,3 ]

However, our AES implementations use a different representation in order to be able
to use a bitsliced S-box instead of the table. Thus, the type of the state in Usuba is u16x8:
each bit of the 8-bit elements is in a different register, and each of the 8 register contains
one bit from each of the 16 elements of the state.

AES’s rounds are built from 4 basic operations: SubBytes, ShiftRows, MixColumn
and AddRoundKey. AddRoundKey is a simple xor between the 128-bit subkey for the
round and the state is thus written as plain ˆ key in the Usuba code. It is expanded
into 8 xors during normalization, as per Table 2.1.

SubBytes, the S-box, is specified as a multiplicative inversion over the finite field
GF (28). However, it is traditionally implemented as a lookup table when cache-timing

https://github.com/DadaIsCrazy/usuba/tree/master/samples/usuba
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table SubBytes(input:v8) returns (output:v8) {
99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 118,
...
140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22 }

node ShiftRows(inputSR:u16x8) returns (out:u16x8)
let forall i in [0,7] {

out[i] = Shuffle(inputSR[i],[ 0, 5, 10, 15,
4, 9, 14, 3,
8, 13, 2, 7,

12, 1, 6, 11 ]) } tel

node RL32(input:u16) returns (out:u16)
let out = Shuffle(input,[ 1, 2, 3, 0,

5, 6, 7, 4,
9, 10, 11, 8,

13, 14, 15, 12 ]) tel

node RL64(input:u16) returns (out:u16)
let out = Shuffle(input,[ 2, 3, 0, 1,

6, 7, 4, 5,
10, 11, 8, 9,
14, 15, 12, 13 ]) tel

node MixColumn(a:u16x8) returns (b:u16x8)
let

b[7] = a[0] ˆ RL32(a[0]) ˆ RL32(a[7]) ˆ RL64(a[7] ˆ RL32(a[7]));
b[6] = a[7] ˆ RL32(a[7]) ˆ a[0] ˆ RL32(a[0]) ˆ RL32(a[6]) ˆ RL64(a[6] ˆ RL32(a[6]));
b[5] = a[6] ˆ RL32(a[6]) ˆ RL32(a[5]) ˆ RL64(a[5] ˆ RL32(a[5]));
b[4] = a[5] ˆ RL32(a[5]) ˆ a[0] ˆ RL32(a[0]) ˆ RL32(a[4]) ˆ RL64(a[4] ˆ RL32(a[4]));
b[3] = a[4] ˆ RL32(a[4]) ˆ a[0] ˆ RL32(a[0]) ˆ RL32(a[3]) ˆ RL64(a[3] ˆ RL32(a[3]));
b[2] = a[3] ˆ RL32(a[3]) ˆ RL32(a[2]) ˆ RL64(a[2] ˆ RL32(a[2]));
b[1] = a[2] ˆ RL32(a[2]) ˆ RL32(a[1]) ˆ RL64(a[1] ˆ RL32(a[1]));
b[0] = a[1] ˆ RL32(a[1]) ˆ RL32(a[0]) ˆ RL64(a[0] ˆ RL32(a[0])) tel

node AddRoundKey(plain,key:u16x8) returns (xored:u16x8)
let xored = plain ˆ key tel

node AES_round(prev:u16x8,key:u16x8) returns (next:u16x8)
let next = AddRoundKey(MixColumn(ShiftRows(SubBytes(prev))),key) tel

node AES128(plain:u16x8,key:u16x8[11]) returns (cipher:u16x8)
vars state : u16x8
let

state = AddRoundKey(plain, key[0]);

forall i in [1,9] {
state := AES_round(state, key[i])

}

cipher = AddRoundKey(ShiftRows(SubBytes(state)), key[10])
tel

Figure 2.5: Usuba implementation of AES



62 CHAPTER 2. USUBA, INFORMALLY

a₀,₀ a₀,₁ a₀,₂ a₀,₃

a₁,₀ a₁,₁ a₁,₂ a₁,₃

a₂,₀ a₂,₁ a₂,₂ a₂,₃

a₃,₀ a₃,₁ a₃,₂ a₃,₃

a₀,₀ a₀,₁ a₀,₂ a₀,₃

a₁,₀a₁,₁ a₁,₂ a₁,₃

a₂,₀ a₂,₁a₂,₂ a₂,₃

a₃,₀ a₃,₁ a₃,₂a₃,₃

<<< 0

<<< 1

<<< 2

<<< 3

(a) Reference description of ShiftRows

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

0 4 8 12

15 9 13

2 610 14

3 7 1115

<<< 0

<<< 1

<<< 2

<<< 3

(b) ShiftRows with Usuba’s hslice layout

Figure 2.6: AES’s ShiftRows step

attacks are not a concern. A lot of work has been done to find efficient circuit implemen-
tations of this S-box [220, 302, 261, 96, 90, 91]. We incorporated the shortest known circuit
(generated by Cagdas Calik [92]) into Usubac’s circuit database. The SubBytes table is
thus expanded to a node containing 113 Boolean operations.

ShiftRows left-rotates the second row of AES’s state matrix by one, the third row
by two and the fourth row by three (Figure 2.6a). However, with our representation of
the state, each register contains one bit from each element of the matrix. ShiftRows can
thus be done by shuffling each register. To find the pattern to use for the shuffle, we can
number the bytes from the state from 0 to 15 and apply the rotations (Figure 2.6b). The
pattern to use in ShiftRows is thus:

[ 0, 5, 10, 15,
4, 9, 14, 3,
8, 13, 2, 7,
12, 1, 6, 11 ]

Finally, MixColumns (Figure 2.2, Page 50), multiplies the state by a constant matrix.
Käsper and Schwabe ([174], Appendix A) showed how to derive the equations to com-
pute this multiplication on a sliced state, which we reused in our implementation. Since
this multiplication mixes bytes from the same column, which are stored in the same reg-
isters, it requires left rotations by one and two in order for them to interact together.
However, since each register contains bytes from 4 different columns, the rotations are
applied on each of those 4 groups at once using Shuffles (RL32 to rotate by one and
RL64 to rotate by two).

2.4.2 ASCON

The ASCON cipher suite [126, 128] was designed for the Competition for Authenticated
Encryption: Security, Applicability, and Robustness (CAESAR) [63]. It was later sub-
mitted to the NIST LWC competition as well. It provides several ciphers (ASCON-128,
ASCON-128a) and hash functions (ASCON-Hash) as well as other cryptographic func-
tions (ASCON-Xof). All of those primitives rely on the same 320-bit permutation. We
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node AddConstant(state:u64x5,c:u64) returns (stateR:u64x5)
let

stateR = (state[0,1], state[2] ˆ c, state[3,4]);
tel

table Sbox(x:v5) returns (y:v5) {
0x4, 0xb, 0x1f, 0x14, 0x1a, 0x15, 0x9, 0x2,
0x1b, 0x5, 0x8, 0x12, 0x1d, 0x3, 0x6, 0x1c,
0x1e, 0x13, 0x7, 0xe, 0x0, 0xd, 0x11, 0x18,
0x10, 0xc, 0x1, 0x19, 0x16, 0xa, 0xf, 0x17

}

node LinearLayer(state:u64x5) returns (stateR:u64x5)
let

stateR[0] = state[0] ˆ (state[0] >>> 19) ˆ (state[0] >>> 28);
stateR[1] = state[1] ˆ (state[1] >>> 61) ˆ (state[1] >>> 39);
stateR[2] = state[2] ˆ (state[2] >>> 1) ˆ (state[2] >>> 6);
stateR[3] = state[3] ˆ (state[3] >>> 10) ˆ (state[3] >>> 17);
stateR[4] = state[4] ˆ (state[4] >>> 7) ˆ (state[4] >>> 41);

tel

node ascon12(input:u64x5) returns (output:u64x5)
vars

consts:u64[12],
state:u64x5

let
consts = (0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5,

0x96, 0x87, 0x78, 0x69, 0x5a, 0x4b);

state = input;
forall i in [0, 11] {

state := LinearLayer(Sbox(AddConstant(state,consts[i])))
}
output = state

tel

Figure 2.7: Usuba implementation of ASCON

focus on this permutation in Usuba, which—for simplicity—we shall call ASCON in the
following, rather than “the ASCON permutation”.

ASCON represents its 320-bit input as 5 64-bit registers (the state), on which it applies
n rounds. For the NIST submission, the recommended number of rounds is 12. Each
round consists of three steps: a constant addition, a substitution layer, and a linear layer.
Figure 2.7 shows the Usuba implementation of ASCON.

The constant addition AddConstant consists in xoring the third register of the state
with a constant. The constant is different at each round.

The substitution layer applies 64 times a 5× 5 Sbox. It is meant to be implemented in
vslice form. ASCON’s author provided an implementation using 22 bitwise instructions,
into which the table above is expanded. In vslicing mode, its inputs and outputs are
monomorphized from v5 (which is shorthand for u‘D ‘m × 5) to u<V>64x5, and it thus
computes 64 S-boxes at once.

Finally, the linear layer rotates and xors the 5 registers of the state, which can be very
naturally written in Usuba using right-rotations >>> and exclusive ors ˆ.
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Ai Bi Ci Di Ei

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

Simeck
box rc⁰i rc¹i
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rc²iSimeck
box
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box

Figure 2.8: ACE’s step function

2.4.3 ACE

ACE [7] is another 320-bit permutation submitted to the NIST LWC competition. An
authenticated cipher and a hash algorithm are derived from this permutation. In Usuba,
we shall focus on the permutation, whose implementation is shown in Figure 2.9.

ACE iterates a step function (ACE_step) 16 times on a state of 5 64-bit registers. The
step function can be represented by the circuit from Figure 2.8. It performs 3 calls to the
function simeck_box:

A := simeck_box(A,RC[0]);
C := simeck_box(C,RC[1]);
E := simeck_box(E,RC[2]);

Then xors the 3 round constants (SC) with the state and the elements of the states be-
tween them:

B := B ˆ C ˆ (0,SC[0]) ˆ (0xffffffff,0xffffff00);
D := D ˆ E ˆ (0,SC[1]) ˆ (0xffffffff,0xffffff00);
E := E ˆ A ˆ (0,SC[2]) ˆ (0xffffffff,0xffffff00);

And finally shuffles each of the five elements of the state:

(Ar, Br, Cr, Dr, Er) = (D, C, A, E, B);

The so-called Simeck Box is built by iterating 8 times the round function of the Simeck
cipher [306] (f in the code) mixed with a constant addition. Since this function operates
on 32-bit values rather than 64-bit ones, we used the type u32x2 for the values manipu-
lated by ACE rather than u64.

ACE uses two sets of constants: RC is used to provide constants to Simeck’s round
function, while SC’s values are directly xored with the state. RC and SC are both de-
fined as two-dimensional vectors: they each contain three vectors corresponding to rc0

(resp., sc0), rc1 (resp., sc1) and rc2 (resp., rc2). For each round, the ith value of each of the
three sub-vectors are extracted using a slice RC[0,1,2][i] (resp., SC[0,1,2][i]). Those
slices are expanded by Usubac into respectively (RC[0][i], RC[1][i], RC[2][i])

and (SC[0][i], SC[1][i], SC[2][i]), but enable a more concise description of the
algorithm.

In practice, SC’s values are not used as is, but are first padded with ones instead of
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node f(x:u32) returns (y:u32)
let

y = ((x <<< 5) & x) ˆ (x <<< 1)
tel

node simeck_box(input:u32x2, rc:u32) returns (output:u32x2)
vars state:u32x2
let

state = input;
forall i in [0, 7] {
state := ( f(state[0]) ˆ state[1] ˆ

0xfffffffe ˆ ((rc >> i) & 1),
state[0] ) ;

}
output = state

tel

node ACE_step(A,B,C,D,E:u32x2,RC,SC:u32[3]) returns (Ar,Br,Cr,Dr,Er:u32x2)
let

A := simeck_box(A,RC[0]);
C := simeck_box(C,RC[1]);
E := simeck_box(E,RC[2]);
B := B ˆ C ˆ (0,SC[0]) ˆ (0xffffffff,0xffffff00);
D := D ˆ E ˆ (0,SC[1]) ˆ (0xffffffff,0xffffff00);
E := E ˆ A ˆ (0,SC[2]) ˆ (0xffffffff,0xffffff00);
(Ar, Br, Cr, Dr, Er) = (D, C, A, E, B);

tel

node ACE(input:u32x2[5]) returns (output:u32x2[5])
vars SC:u32[3][16],

RC:u32[3][16],
state:u32x2[5]

let
SC = (0x50,0x5c,0x91,0x8d,0x53,0x60,0x68,0xe1,0xf6,0x9d,0x40,0x4f,0xbe,0x5b,0xe9,0x7f,

0x28,0xae,0x48,0xc6,0xa9,0x30,0x34,0x70,0x7b,0xce,0x20,0x27,0x5f,0xad,0x74,0x3f,
0x14,0x57,0x24,0x63,0x54,0x18,0x9a,0x38,0xbd,0x67,0x10,0x13,0x2f,0xd6,0xba,0x1f);

RC = (0x07,0x0a,0x9b,0xe0,0xd1,0x1a,0x22,0xf7,0x62,0x96,0x71,0xaa,0x2b,0xe9,0xcf,0xb7,
0x53,0x5d,0x49,0x7f,0xbe,0x1d,0x28,0x6c,0x82,0x47,0x6b,0x88,0xdc,0x8b,0x59,0xc6,
0x43,0xe4,0x5e,0xcc,0x32,0x4e,0x75,0x25,0xfd,0xf9,0x76,0xa0,0xb0,0x09,0x1e,0xad);

state = input;

forall i in [0, 15] {
state = ACE_step(state, RC[0,1,2][i],SC[0,1,2][i]);

}

output = state;
tel

Figure 2.9: Usuba implementation of ACE

zeros. Put otherwise, SC should contain 0xfffffffffffff50, 0xfffffffffffff5c etc.
instead of 0x50, 0xff etc. This trick is used in the reference implementation of ACE,
which we followed in our Usuba implementation.
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node QR (a,b,c,d:u<V>32)
returns (aR,bR,cR,dR:u<V>32)

let
a := a + b;
d := (d ˆ a) <<< 16;
c := c + d;
b := (b ˆ c) <<< 12;
aR = a + b;
dR = (d ˆ aR) <<< 8;
cR = c + dR;
bR = (b ˆ cR) <<< 7;

tel

node DR (state:u<V>32x16) returns (stateR:u<V>32x16)
let

state[0,4,8,12] := QR(state[0,4,8,12]);
state[1,5,9,13] := QR(state[1,5,9,13]);
state[2,6,10,14] := QR(state[2,6,10,14]);
state[3,7,11,15] := QR(state[3,7,11,15]);

stateR[0,5,10,15] = QR(state[0,5,10,15]);
stateR[1,6,11,12] = QR(state[1,6,11,12]);
stateR[2,7,8,13] = QR(state[2,7,8,13]);
stateR[3,4,9,14] = QR(state[3,4,9,14]);

tel

node Chacha20 (plain:u<V>32x16) returns (cipher:u<V>32x16)
vars state : u<V>32x16
let

state = plain;
forall i in [1,10] {

state := DR(state)
}
cipher = state + plain

tel

Figure 2.10: Usuba implementation of CHACHA20

2.4.4 CHACHA20

CHACHA [61] is a family of stream ciphers derived from Salsa [62]. Three variants
are recommended by its author, D. J. Bernstein: CHACHA8, CHACHA12 and CHACHA20,
depending on the security level required. Those ciphers differ only in their number of
rounds: 8, 12 and 20. The Usuba implementation of CHACHA20 is shown in Figure 2.10.

CHACHA20’s state is 64 bytes divided in 16 32-bit registers, which corresponds to the
Usuba type u<V>32x16. Since CHACHA20 relies on 32-bit additions, it can only be sliced
vertically. We document this specificity by annotating its types with the explicit direction
V.

CHACHA20 is made of 10 “double rounds” (DR), each of them relying on “quarter
rounds” (QR). The quarter round updates 4 elements of the state using additions, xors
and left rotations. Since CHACHA is specified in an imperative manner, by constantly
updating its state, we use the imperative assignment operator := to be as close to the
specification as possible.
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table[] sbox(input:v4) returns (out:v4) [
{ 3, 8,15, 1,10, 6, 5,11,14,13, 4, 2, 7, 0, 9,12 } ;
{15,12, 2, 7, 9, 0, 5,10, 1,11,14, 8, 6,13, 3, 4 } ;
{ 8, 6, 7, 9, 3,12,10,15,13, 1,14, 4, 0,11, 5, 2 } ;
{ 0,15,11, 8,12, 9, 6, 3,13, 1, 2, 4,10, 7, 5,14 } ;
{ 1,15, 8, 3,12, 0,11, 6, 2, 5, 4,10, 9,14, 7,13 } ;
{15, 5, 2,11, 4,10, 9,12, 0, 3,14, 8,13, 6, 7, 1 } ;
{ 7, 2,12, 5, 8, 4, 6,11,14, 9, 1,15,13, 3,10, 0 } ;
{ 1,13,15, 0,14, 8, 2,11, 7, 4,12,10, 9, 3, 5, 6 }

]

node linear_layer(x:u32x4) returns (out:u32x4)
let

x[0] := x[0] <<< 13;
x[2] := x[2] <<< 3;
x[1] := x[1] ˆ x[0] ˆ x[2];
x[3] := x[3] ˆ x[2] ˆ (x[0] << 3);
x[1] := x[1] <<< 1;
x[3] := x[3] <<< 7;
x[0] := x[0] ˆ x[1] ˆ x[3];
x[2] := x[2] ˆ x[3] ˆ (x[1] << 7);
x[0] := x[0] <<< 5;
x[2] := x[2] <<< 22;
out = x

tel

node Serpent(plaintext:u32x4, keys:u32x4[33]) returns (ciphertext:u32x4)
vars state : u32x4
let

state = plaintext;

forall i in [0,30] {
state := linear_layer(sbox<i%8>(state ˆ keys[i]))

}

ciphertext = sbox<7>(state ˆ keys[31]) ˆ keys[32]
tel

Figure 2.11: Usuba implementation of SERPENT

2.4.5 SERPENT

SERPENT [78] was another finalist of the AES competition, where it finished in second
place behind Rijndael. It reuses parts of DES’s S-boxes, which are known to be very re-
silient to differential cryptanalysis [74]. The Usuba implementation of SERPENT is shown
in Figure 2.11.

SERPENT uses a 128-bit plaintext, represented as 4 32-bit registers (u32x4 in Usuba).
32 rounds are applied to this plaintext, each one build from an S-box, a linear layer, and
key addition (inlined in our implementation using a xor).

Each round uses one of 8 S-boxes in a round-robin way. We thus put the S-boxes
in an array of tables (table[] sbox), and access them within the main loop using the
syntax sbox<index>, where index is the round number modulo 8. Circuits to compute
those S-boxes were provided in the AES submission, but better ones (requiring fewer
registers) were later computed by Osvik [234]. We incorporated the latter in Usubac’s
tables database, after verifying that they are still faster on modern Intel CPUs.

The linear layer (linear_layer) is made of left rotations, left shifts and xors. It
repetitively updates the state’s 4 registers, which is very naturally expressed in Usuba
using the imperative assignment operator :=.
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2.5 Conclusion

In this chapter, we described the Usuba programming language, which provides high-
level constructions (e.g., nodes, loops, vectors, tables) to specify symmetric block ciphers.
Usuba abstracts away both slicing (through polymorphic types) and SIMD paralleliza-
tion: an Usuba program can be compiled for any architecture that supports its operations.

Using several examples, we showed how Usuba can be used to specify a wide range
of ciphers that were designed with slicing in mind (e.g., SERPENT) or not (e.g., AES), that
rely on arithmetic operations (e.g., CHACHA20) or not (e.g., SERPENT), that are recent
(e.g., ASCON) or not (e.g., AES).

2.5.1 Related Work

Languages for Cryptography

Cryptographic libraries have traditionally been implemented in low-level programming
languages, such as C (e.g., Linux Kernel [2], Sodium [1], OpenSSL [3], Crypto++ [123]).
However, recently, some effort to use higher-level general-purpose languages have been
undertaken in order to provide stronger guarantees (e.g., memory safety). For instance,
the TLS implementation nqsbTLS [170], written in OCaml, and MITLS [70], written in
F# and F∗, both benefit from the ability of OCaml and F# to prevent out-of-bound array
indexing. Going even further, several languages have been designed to bring stronger
guarantees, higher-level constructions and better performance to cryptographic imple-
mentations. We review the most relevant ones in the following, focusing on languages
targeting cryptographic primitives, and excluding languages to write protocols (e.g., CPPL
[154]), which we consider out of scope.

Cryptol [201] started from the observation that due to the lack of standard for specify-
ing cryptographic algorithms, papers described their ciphers using a combination of En-
glish (which Cryptol’s authors deem “ambiguous” [201]) and pseudo-code (which tends
to “obscure the underlying mathematics” [201]) while providing reference implemen-
tations in C (“far too low-level” [201]). Thus, Cryptol is a programming language for
specifying cryptographic algorithms, from protocols and modes of operations down to
primitives. It covers a broader range than Usuba, which focuses solely on primitives.

Usuba’s design and abstractions were driven by existing CPU architectures, but still
aims at providing a semantics abstract enough to allow reasoning on combinational cir-
cuits. Often, ciphers are described at this level of abstraction, but not always: AES, for
instance, is specified in terms of operations in a finite field. Cryptol handles well this
type of cipher, by providing high-level mathematical abstractions, even when they do
not trivially map to hardware. As such, Cryptol natively supports polynomials and field
arithmetic, allowing it to express naturally ciphers like AES. For instance, AES’s multi-
plication inGF (28) modulo the irreducible polynomial x8 +x4 +x3 +x+1 can be written
in Cryptol as:

irreducible = <| xˆˆ8 + xˆˆ4 + xˆˆ3 + x + 1 |>

gf28Mult : (GF28, GF28) -> GF28
gf28Mult (x, y) = pmod(pmult x y) irreducible

Cryptol basic types are bitvectors, similar to Usuba’s un types, which can be grouped
in tuples, similar to what Usuba offers. However, where tuples are at the core of Usuba’s
programs, Cryptol’s main construction is the sequence, which, unlike a tuple, only con-
tains elements of the same type. Several operators allow to manipulate sequences: com-
prehensions, enumerations, infinite sequences, indexing and appending operators. Fur-
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thermore, bitvectors can be specified using boolean sequences. For instance, the expres-
sion [True, False, True, False, True, False] constructs the integer 42, and the
indexing operation @ can be used with the same effect on the literal 42 or on this se-
quence: both 42 @ 2 and [True, False, True, False, True, False] @ 2 re-
turn True. Usuba does not allow bit-manipulation of words, which would not be effi-
cient on most CPU architectures.

The Cryptol language is more expressive than Usuba, and includes features such as
records, strings, user-defined types, predicates, modules, first-class type variables and
lambda expressions. By focusing on symmetric cryptographic primitives in Usuba, we
strove to keep the language as simple (yet expressive) as possible, and did not require
those constructions.

Another aspect of Cryptol is that it allows programmers to write the specifications
within their code, and assert their validity using SMT solvers (Z3 [124] by default). An
example of such a property is found in Cryptol’s reference AES implementation:

property AESCorrect msg key =
aesDecrypt (aesEncrypt (msg, key), key) == msg

which states that decrypting a ciphertext encrypted with AES yields the original plain-
text. When the SMT solver fails to prove properties in reasonable time, Cryptol falls back
to random testing: it tests the property on a given number of random inputs and checks
whether it holds. Usuba does not offer such features at this stage.

Overall, Cryptol is an expressive specification language for cryptography, but falls
short on the performance aspect. With Usuba, we chose to focus only on symmetric
primitives in order to provide performance on par with hand-tuned implementations.
We thus adopted a bottom-up approach, offering only high-level constructions that we
are able to compile to efficient code.

CAO [36, 38] is a domain-specific programming language (DSL) that focuses on cryp-
tographic primitives. Like Usuba, CAO started from the observation that writing primi-
tives in C either leads to poor performance because the C compiler is unable to optimize
them well, or to unmaintainable code because optimizations are done by hand.

The level of abstraction provided by CAO is similar to Usuba: functions, for loops,
standard C operators (+, -, *, etc.), ranges to index multiple elements of a vector, concate-
nation of vectors. CAO also has a map operator, which specifies mapping from inputs to
outputs of a permutation, in a style similar to Usuba’s perm nodes.

However, whereas Usuba’s main target is symmetric cryptography, CAO is more ori-
ented toward asymmetric (public-key) cryptography, and thus offers many abstractions
for finite field arithmetic. However, those constructions are also useful to specify some
symmetric ciphers defined using mathematical operations (e.g., AES). For instance, one
can define a type f for AES’s values as follows:

typedef f := gf[2 ** 8] over ∗ ∗ 8+ ** 4 + ∗ ∗ 3+ + 1

AES’s Mixcolumn can then be written at a higher level in CAO than in Usuba, letting the
programmer to directly appeal to operators in GF (28), which Usuba does not provide.

To support public-key cryptography, CAO also provides conditionals in the language.
However, to prevent timing attacks, variables can be annotated as being secret: the
compiler will emit an error if a conditional depends on a secret value. Such a mech-
anism is not needed in Usuba, where conditionals on non-static values cannot be ex-
pressed at all.

Because of the exotic types introduced for dealing with public-key cryptography (e.g.,
polynomials, very large integers), CAO applies several optimizations to its programs be-
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fore generating C code. For instance, C compilers’ strength reduction pass (replacing
“strong” operations by “weaker” ones, such as replacing a multiplication by several ad-
ditions) will not handle finite field arithmetic, but CAO’s does.

CAO also offers a way for programs to be resilient against side-channel attacks, by
providing an operator ?, which introduces fresh randomness. However, introducing
randomness throughout the computation is not sufficient to be secure [237]. Thus, CAO
uses Hidden Markov Models to try and break the modified implementation. Usuba in-
tegrates recent progress in provable countermeasures against side-channel attacks [250],
thus providing a stronger security (Chapter 6).

FaCT [100, 99] is a C-style DSL for cryptography, which generates provably constant-
time LLVM Intermediate Representation (IR) code. FaCT allows developers to write
cryptographic code without having to resort to programming “tricks” to make it constant-
time, like masking conditionals, or using flags instead of early-return. Those tricks ob-
fuscate the code, and an error can lead to devastating security issues [15].

Instead, FaCT allows developers to write C-style code, where secret values are an-
notated with the keyword secret. The compiler then takes care of transforming any
non-constant-time idiom into constant-time ones. It thus automatically detects and se-
cures unsafe early routine terminations, conditional branches, and memory accesses.

FaCT’s transformations are proven to produce constant-time code. However, because
LLVM could still introduce a vulnerability (for instance by optimizing branchless state-
ments with conditional branches), they rely on dudect [259] to ensure that the final assem-
bly is empirically constant-time. Moreover, FaCT has a notion of public safety to ensure
the memory safety as well as the lack of buffer overflows/underflows and undefined
behaviors. FaCT ensures the public safety of a program using the Z3 SMT solver [124].

FaCT and Usuba differ in their use-cases. FaCT targets protocols (e.g., TLS) and asym-
metric primitives (e.g., RSA), whereas Usuba focuses on symmetric cryptography. Fur-
thermore, Usuba is higher-level than FaCT: the latter can almost be straightforwardly
compiled to C and requires developers to explicitly use SIMD instructions when they
want them, while Usuba requires more normalization (especially when automatically
bitslicing programs) and automatically generates vectorized code. Both languages, how-
ever, achieve similar performance as hand-tuned implementations.

dSCADL [254] is a data flow based Symmetric Cryptographic Algorithm Description
Language. The language is meant to allow developers to write symmetric primitives
with a simple language, which should be intuitive to use, while still offering good per-
formance.
dSCADL’s variables are either scalars or cubes. Scalars are integers, either used in the
control flow like loop indices, or to represent any mono-dimensional (potentially secret)
data. Cubes are used for multidimensional data, for instance to represent AES’s state as a
matrix. To compare with Usuba’s types, scalars resemble Usuba’s um atoms, while cubes
are similar to Usuba’s vectors. dSCADL provides operators to manipulate cubes, such as
pointwise arithmetic and substitution, matrix multiplication, row and column concate-
nation. These cube operators allow dSCADL’s AES implementation to be higher level
that Usuba’s, as MixColumn (the matrix multiplication) is done with a simple operator,
expanded by the compiler to lower-level operations.
However, dSCADL compiles to OCaml code and then links with a runtime library, mak-
ing it much slower than Usuba, which compiles directly to C with SIMD instructions.
Finally, dSCADL allows the use of secret values in conditionals, as well as lookup in ta-
bles at secret indices, making the produced code potentially vulnerable to timing attacks.



2.5. CONCLUSION 71

ADSLFC. Agosta and Pelosi [9] proposed a domain-specific language for cryptography.
This DSL was not named, but we shall call it ADSLFC (A Domain Specific Language
For Cryptography) in the following, for simplicity. ADSLFC is based on Python in the
hope that developers will find it easy to use, and will easily assimilate the syntax (unlike
Cryptol for instance, which they deem “much harder to understand for a non-specialized
user [than C]” in [9], Section 4). Finally, ADSLFC is compiled to Python (but the authors
mention as future work that they would like to compile to C as well), in order to allow
for easy interoperability with C and C++.

The base type of ADSLFC is int, which represents a signed integer of unlimited
precision. This type can then be refined by specifying its size (int.32 for a 32-bit integer
for instance), or made unsigned using the u. prefix. The TEA cipher for instance takes as
input values of type u.int.32, similar to Usuba’s u32. Vectors can be used to represent
either arrays (possibly multidimensional) of integers or polynomials. To deal with finite
field arithmetic, a mod x (where x is a polynomial) annotation can be added to a type,
meaning that operations on this type are done modulo x.

Standard arithmetic operators are provided for integers (e.g., addition, multiplication,
exponentiation), as well as bitwise operators, and an operator to call a S-box (represented
as a vector used as a lookup table). Additional operators are available to manipulate vec-
tors: concatenation, indexing, replication, transposition, etc. The features of the language
are thus similar to Usuba’s, with added constructions to deal with finite field arithmetic
and polynomials.

Finally, ADSLFC was designed to allow fast prototyping and development, with
seemingly no regard for performance, unlike Usuba, for which speed is a crucial aspect.
No performance numbers are provided in the original paper [9], but since ADSLFC com-
piles to Python, and no performance-related optimizations are mentioned, we can expect
the generated code to be slower than Usuba’s optimized C code.

BSC [248] is a direct ancestor of Usuba. The initial design of Usuba [212], which did
not support mslicing, was largely inspired by BSC: lookup tables and permutations orig-
inated from BSC, and the types (Booleans and vectors of Booleans) were similar. Usuba’s
tuples are also inspired from BSC’s vectors: in BSC, a vector of size n can be destruc-
ted into two vectors of size i and j (such that i + j = n) using the syntax [a # b] =
c (where a, b and c are vectors of size i, j and n), which is equivalent to Usuba’s (a,
b) = n. Finally, Usuba borrows from BSC the algorithm to convert lookup tables into
circuits.

!
The performance comparison between Usuba and BSC is available at:
https://github.com/DadaIsCrazy/usuba/tree/master/experimentations/
usuba-vs-bsc

Usuba improves upon BSC by expanding the range of optimizations beyond mere
copy propagation. Furthermore, BSC did not offer loop constructs, and inlines every
function, producing large amount of code. Benchmarking BSC against Usuba on DES

(the only available example of BSC code) shows that Usuba is about 10% faster, mainly
thanks to its scheduling algorithm.

Finally, mslicing was introduced almost a decade after BSC [189, 174], and most SIMD
extensions postdate BSC: the first SSE instructions sets were introduced in 1999. Usuba
shows that both mslicing and vectorization are nonetheless compatible with the program-
ming model pioneered by BSC.

https://github.com/DadaIsCrazy/usuba/tree/master/experimentations/usuba-vs-bsc
https://github.com/DadaIsCrazy/usuba/tree/master/experimentations/usuba-vs-bsc
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Low∗ [249] is a low-level language embedded in F∗ [286], which compiles to C and was
used to implement the HACL∗ cryptographic library [310]. Being low-level, Low∗ offers
high performance, almost on par with libsodium.

Low∗, taking advantage of F∗ being a proof assistant as well as a programming lan-
guage, can be used to prove the correctness of cryptographic implementations and enjoys
a formally certified pipeline down to C (or assembly if CompCert is used to compile the
produced C code). F∗’s type-system also ensures the memory safety of Low∗ programs
(e.g., no out of bound accesses can be performed, uninitialized memory cannot be ac-
cessed). Furthermore, Low∗ ensures that branches and memory accesses do not depend
on secret values, thus preventing any timing attack.

Low∗ is more versatile than Usuba, as the former can be used to write any crypto-
graphic program (e.g., protocols, public-key ciphers, block ciphers), whereas the latter is
only designed for symmetric primitives. Usuba, however, provides higher-level abstrac-
tions: Low∗ offer similar abstractions as C and even requires programmers to explicitly
manipulate the stack. Generating Low∗ code from Usuba would provide a high-level way
to implement symmetric primitives, while still being able to benefit from the guarantees
(e.g., correctness, constant-time and memory safety for the whole protocol) provided by
Low∗.

Portable Assemblers

The cryptographic community tends to prefer assembly to C to write high-performance
primitives, Daniel J. Bernstein even announcing “the death of optimizing compilers” [64].
Several custom assemblers have thus been developed (e.g., qhasm [60] and perlasm
[233]), aiming at writing high-performance code, while abstracting away some of the
boilerplate and architecture-specific constraints.

The semantics of these assemblers remain largely undocumented, making for a poor
foundation to carry verification work. Recent works have been trying to bridge that gap
(e.g., Jasmin [18] and Vale [87]) by introducing full-featured portable assembly languages,
backed by a formal semantics and automated theorem proving facilities. The arguments
put forward by these works resonate with our own: we have struggled to domesticate 3
C compilers (Clang, GCC, ICC), taming them into somewhat docile register allocators for
SIMD intrinsics. While this effort automatically ripples through to all Usuba programs,
it is still a wasteful process. Targeting one of these portable assemblers could allow us to
perform more optimizations, and have more predictable performance, without needing
to implement architecture-specific assembly backends.



Chapter 3

Usuba, Greek Edition

In this chapter, we give a formal treatment of Usuba, covering its type system and se-
mantics. We take this opportunity to specify the invariants enforced by the compiler.
Figure 3.1 illustrates the pipeline described in this chapter. Leaving aside type-inference
and surface constructions (e.g., vectors, loops, imperative assignments), we focus on
Usubacore, the core calculus of Usuba. After introducing the formal syntax of Usubacore

and showing how it compares to Usuba (Section 3.1), we present its type system (Sec-
tion 3.2). We then describe monomorphization of Usubacore programs into Usubamono

programs (Section 3.3): monomorphization is responsible for specializing a cipher to a
given architecture and slicing form. The semantics of (well-typed) monomorphic pro-
grams is given in Section 3.4. We later introduce a normalization pass that lowers Usubamono

programs down to the Usuba0 language (Section 3.5). We can then translate Usuba0 pro-
grams into imperative programs in PseudoC, a C-like language (Section 3.6), focusing on
the salient parts of the translation. Finally, we show that if our compiler is correct, com-
piling an Usubacore program pgm produces a PseudoC program prog, such that a single
execution of prog behaves as N sequential executions of pgm, or, put otherwise, prog is a
vectorized version of pgm.

Usuba Usubacore Usubamono Usuba0

PseudoCCasm

M
(Figure 3.6)

N
(Specification 1)

S ◦ C
(Specification 2,

Figure 3.11)

Figure 3.1: Usuba’s formal pipeline

Notation: maps. We use the notation µ 7→ ν to denote the type of a map whose keys
are of type µ and values are of type ν. Given a map m : µ 7→ ν, and k and v two elements
of type respectively µ and ν, the syntax m(k) ← v denotes a map identical to m with an
additional mapping from k to v, while the syntax {k ← v} denotes a singleton from k to
v. Conversely, the syntaxm(k) denotes the value associated with k inm. By construction,
we never overwrite any key/value of a map: whenever we do m(k) ← v, there is never
a previously existing binding for k in m.

Notation: collections. For conciseness, we use the symbol
⇀

t to denote a tuple (t0, . . . , tn−1)
of elements belonging to some syntactic category t. Given any tuple

⇀

t, we use the infor-
mal notation tj to denote its jth element.

73
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3.1 Syntax

The syntax of Usubacore is defined in Figure 3.2. A program pgm is a set of nodes nd. We
impose that the node call graph is totally ordered. This forbids recursion (and mutual
recursion) among nodes. Similarly, equations in a node must be totally ordered along
variable definitions. This ensures that the equations can be sequentially scheduled and
compiled to C. The node call graph must have a single root, which we conventionally
call main. We assume that main is the last node of a program source.

Nodes (nd) are parameterized by polymorphic directions
⇀

δ and word sizes ⇀
ω. An

operator signature Θ provides the signature of the operators necessary for the node, thus
restricting

⇀

δ and ⇀
ω to satisfy these signatures. Node calls explicitly pass the directions

and word sizes of their argument to the callee.
Input type annotation (i :[ τ) are decorated so as to distinguish constants ([ = K) from
variables ([ = i). Similarly, output type annotations (o :] τ) are decorated so as to
distinguish local variables (] = L) from actual outputs (] = o)

Elaboration from Usuba to Usubacore Notably, Usubacore (Figure 3.2) does not pro-
vide vectors, loops and imperative assignments (:=). Their semantics is given by elabo-
ration from Usuba to Usubacore (Figure 3.3). We illustrate this elabortation on the follow-
ing Usuba node:

node f(x:v1[4], y:v1) returns (z:v1[4])
vars t : v1
let

t = 1;
forall i in [0, 3] {

z[i] = x[i] ˆ y ˆ t;
t := ˜t;

}
tel

node g(a:u32x4, b:u32) returns (c:u32x4)
let

c = f(a[3,1,0,2],b)
tel

This node is elaborated to:

node f : ∀δω {ˆ : uδω → uδω → uδω, ˜ : uδω → uδω} ⇒
(x0 :i uδω, x1 :i uδω, x2 :i uδω, x3 :i uδω, y :i uδω)
→ (t0 :L uδω, t1 :L uδω, t2 :L uδω, t3 :L uδω,

z0 :o uδω, z1 :o uδω, z2 :o uδω, z3 :o uδω) =
t = 1;
z0 = x0 ˆ y ˆ t;
t1 = ˜t;
z1 = x1 ˆ y ˆ t1;
t2 = ˜t1;
z2 = x2 ˆ y ˆ t2;
t3 = ˜t2;
z3 = x3 ˆ y ˆ t3;
t4 = ˜t3;

node g : ∀δ {} ⇒
(a0 :i uδ32, a1 :i uδ32, a2 :i uδ32, a3 :i uδ32, b :i uδ32)
→ (c0 :o uδ32, c1 :o uδ32, c2 :o uδ32, c3 :o uδ32) =
(c0, c1, c2, c3) = f δ 32 (a3, a1, a0, a2, b)
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pgm ::=
⇀

nd program
nd ::= node f : σ =

⇀
eqn node

eqn ::= ⇀
x = e equation

e ::= expressions
| n (constant)
| x (variable)
| ⇀

e (tuple)
| op e (overloaded call)
| f

⇀

D
⇀
w e (node call)

σ ::= ∀
⇀

δ
⇀
ω.Θ⇒ (

⇀

i :[ τ)→ (
⇀

o :] τ) type scheme

Θ ::= operator signature
| ε (empty)
| Θ, op : π (declaration)

op ::= overloaded operators
| & | | | ˆ | ˜ (logical operators)
| + | * | - (arithmetic operators)
| >>n | <<n | >>>n | <<<n (shifts)
| shuffle⇀

n (shuffles)
| bitmaskn (bit masks)
| pack (register packing)

[ ::= input annotation
| K (constant)
| i (regular)

] ::= output annotation
| L (local)
| o (regular)

π ::= τ → τ function type
τ ::= first-order types

| uDw (atom)
| ⇀

τ (n-ary product)
D ::= slicing direction

| dir (static)
| δ (slicing variable)

w ::= word size
| m (static)
| ω (size variable)

m, n ::= 0 | 1 | . . . natural numbers
dir ::= directions

| V (vertical)
| H (horizontal)

Figure 3.2: Syntax of Usubacore
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Loops:
(0) T (forall i in [ei, ef ]

⇀
eqs) =

⇀
eqs[i/ei];

⇀
eqs[i/ei + 1] ...

⇀
eqs[i/ef − 1];

⇀
eqs[i/ef ]

Imperative assignment:
(1) T (x := e;

⇀
eqs) = x′ = e;

⇀
eqs[x/x′]

Vectors:
(2) T (x : τ [n]) = (x0 : τ, x1 : τ ... xn−1 : τ)

(3) T (xτ [n]) = (xτ0 ... x
τ
n−1)

(4) T (x[i]) = xi
(5) T (x[a..b]) = (xa, xa+1 ... xb−1, xb)
(6) T (x[l]) = (xl0 , xl1 ... xln−1 , xln)

Figure 3.3: Elaboration of Usuba’s syntactic sugar to Usubacore

The forall and := of f have been expanded (rules (0) and (1) of Figure 3.3). f’s vector
parameters x and z declarations have been replaced by tuples (rule (2)). Accesses to
elements of x and z have been replaced by scalars (rule (4)). In g, the two vectors a and
b (recall from Section 2.3 that um× n is equivalent to um[n]) have also been expanded in
the parameters (rule (2)), and have been replaced by tuples in the equations, including
when used with a slice (rules (3) and (6)).
Additionally, polymorphic parameters δ and ω, which were implicit in the type v1 of f,
are now explicit. Similarly, the operator signature of the f, implied in the Usuba code by
the use of ˆ and ˜ on values of type v1, is now explicitly lambda-lifted in a signature. g,
on the other hand, is only direction-polymorphic, and does not use any operators. As a
result, its operator signature is empty. The call to f in g now passes δ as slicing direction,
and 32 as word size.

3.2 Type System

Our type system deliminates a first-order language featuring ad-hoc polymorphism [169,
296] over a fixed set of signatures.

Typing Validity Figure 3.4 defines the validity of the various contexts constructed dur-
ing typing. Within a node, Γ is an environment containing polymorphic directions and
word sizes as well as typed variables. Similarly, ∆ contains function type-schemes.

Type system. Figure 3.5 gives the typing rules for Usubacore. A program
⇀

nd is well-
typed with respect to an ambient operator signature ΘA if all of its nodes are well-typed
in the program context ∆ = {f : σ | f : σ =

⇀
eqn ∈

⇀

nd} and the operator signature ΘA
(rule PROG).

A node is well-typed with respect to an ambient operator signature ΘA and a program
environment ∆ if each of its equation is well-typed in the typing context Γ built from its
type-scheme σ, and the operator signature formed by the union of ΘA and the node-local
operator signature Θ (rule NODE).

The type of the application of an overloaded operator op to an expression e of type τ
is τ ′ if the operator signature Θ contains the operator op with type τ → τ ′ (rule OP APP).
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Γ ::= E
| Γ, δ
| Γ, ω
| Γ, x : τ

∆ ::= E
| ∆, f : σ

` Γ VALID

` E VALID
` Γ VALID
` Γ, δ VALID

` Γ VALID
` Γ, ω VALID

` Γ VALID Γ ` τ VALID
` Γ, x : τ VALID

Γ ` τ VALID

Γ ` τj VALID
Γ ` ⇀

τ VALID
δ ∈ Γ

Γ ` uδm VALID
ω ∈ Γ

Γ ` udirω VALID

Γ ` udirm VALID
δ ∈ Γ ω ∈ Γ

Γ ` uδω VALID

` σ VALID

⇀

δ,
⇀
ω ` Θ VALID

⇀

δ,
⇀
ω ` τj VALID

⇀

δ,
⇀
ω ` τ ′j VALID

` ∀
⇀

δ
⇀
ω .Θ ⇒ (

⇀

i :] τ)→ (
⇀

o :[ τ
′) VALID

Γ ` Θ VALID

Γ ` E VALID
Γ ` Θ VALID Γ ` π VALID

Γ ` Θ, op : π

Γ ` π VALID

Γ ` τ VALID Γ ` τ ′ VALID
Γ ` τ → τ ′ VALID

` ∆ VALID

` E VALID
` ∆ VALID ` σ VALID

` ∆, f : σ VALID

` ∆; Γ; Θ VALID

` ∆ VALID ` Γ VALID Γ ` Θ VALID
` ∆; Γ; Θ VALID

Figure 3.4: Validity of a typing context
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ΘA ` pgm

⇀

nd; ΘA ` ndj
ΘA `

⇀

nd
PROG

∆; ΘA ` nd

∆;
⇀

δ,
⇀
σ,

⇀

i : τ ,
⇀
o : τ ; ΘA,Θ ` eqnj

∆; ΘA ` node f : ∀
⇀

δ
⇀
ω.Θ⇒ (

⇀

i :[ τ)→ (
⇀

o :] τ) =
⇀
eqn

NODE

∆; Γ; Θ ` ⇀
x = e

∆; Γ; Θ ` ⇀
x : τ ∆; Γ; Θ ` e : τ

∆; Γ; Θ ` ⇀
x = e

EQN

∆; Γ; Θ ` e : τ

CONST
` ∆; Γ; Θ VALID
∆; Γ; Θ ` n : uDw

VAR
` ∆; Γ; Θ VALID x : τ ∈ Γ

∆; Γ; Θ ` x : τ

TUPLE
∆; Γ; Θ ` ej : τj

∆; Γ; Θ ` ⇀
e :

⇀
τ

(|⇀e| = |⇀τ |) OP APP
∆; Γ; Θ ` e : τ op : τ → τ ′ ∈ Θ

∆; Γ; Θ ` op e : τ ′

NODE APP

∆; Γ; Θ ` e : τ f : ∀
⇀

δ
⇀
ω.Θ′ ⇒ (

⇀

i :[ τ
′)→ (

⇀

o :] τ
′′) ∈ ∆

⇀

τ ′[
⇀

δ/
⇀

D][
⇀
ω/⇀w] = τ Θ′[

⇀

δ/
⇀

D][
⇀
ω/⇀w] ⊆ Θ

∆; Γ; Θ ` f
⇀

D
⇀
w e :

⇀

τ ′′[
⇀

δ/
⇀

D][
⇀
ω/⇀w]

(|⇀ω| = |⇀w|), (|
⇀

δ| = |
⇀

D|)

Figure 3.5: Type system

Finally, node application (rule NODE APP) combines an explicit type application—for
slicing and size parameters—followed by a full function application to the arguments
(Usuba does not support partial application). We check that the local operator signature
Θ′ is compatible with the current Θ. That is, substituting f ’s slicing direction and word
size variables for the call’s own slicing direction and word size variables must produce an
operator signature whose operators are provided by Θ, which ensures that all operations
within the node are available on the architecture modelled by Θ.

3.3 Monomorphization

We do not implement ad-hoc polymorphism by dictionary passing [296], which would
imply a run-time overhead, but resort to static monomorphization [169, 180]. Monomor-
phization (Figure 3.6) is a source-to-source transformation that converts a polymorphic
Usubacore program into a monomorphic Usubamono program. Directions and word sizes
in an Usubamono program are static, which means that all the type-schemes in the pro-
gram are of the form (i :[ τ)→ (o :] τ) rather than ∀

⇀

δ
⇀
ω.Θ⇒ (i :[ τ)→ (o :] τ).
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MΘarch(pgm)

⇀
dir,

⇀
m
 pgm

MΘarch(main)pgm

⇀
dir,

⇀
m
 

⇀

nd;main′

MΘarch(pgm,main)

⇀
dir,

⇀
m
 

⇀

nd;main′
PROG

MΘarch(nd)pgm

⇀
dir,

⇀
m
 

⇀

nd;nd

NODE

|⇀ω| = |⇀m| |
⇀

δ| = |
⇀

dir|
Θ[

⇀

δ/
⇀

dir][
⇀
ω/⇀m] ⊆ Θarch

MΘarch(eqnj)pgm  
⇀

ndj ; eqn
′
j

nd = node f : ∀
⇀

δ
⇀
ω.Θ′ ⇒ (

⇀

i :[ τ)→ (
⇀

o :] τ
′) =

⇀
eqn

nd′ = node f
⇀
dir
⇀
m

: (i
⇀
:[ τ [

⇀

δ/
⇀

dir][
⇀
ω/⇀m])→ (o

⇀
:] τ
′[
⇀

δ/
⇀

dir][
⇀
ω/⇀m]) =

⇀

eqn′

MΘarch(nd)pgm

⇀
dir,

⇀
m
 

⋃ ⇀

ndj ;nd
′

MΘarch(eqn)pgm  
⇀

nd; eqn

MΘarch(e)pgm  
⇀

nd; e′

MΘarch(
⇀
x = e)pgm  

⇀

nd;
⇀
x = e′

EQN

MΘarch(e)pgm  
⇀

nd; e

MΘarch(n)pgm  ∅;n
CONST

MΘarch(x)pgm  ∅;x
VAR

MΘarch(ej)pgm  
⇀

ndj ; e
′
j

MΘarch(
⇀
e)pgm  

⋃ ⇀

ndj ;
⇀

e′
TUPLE

MΘarch(e)pgm  
⇀

nd; e′

MΘarch(op e)pgm  
⇀

nd; op e′
OP APP

MΘarch(pgm(f))pgm

⇀
dir,

⇀
m
 

⇀

nd′;nd

MΘarch(e)pgm  
⇀

nd′′; e′

MΘarch(f
⇀

dir
⇀
m e)pgm  nd,

⋃ ⇀

nd′,
⇀

nd′′; f
⇀
dir
⇀
m

e′
NODE APP

Figure 3.6: Monomorphization of Usubacore programs
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Monomorphization is defined with respect to a specific architecture that implements
an operator signature Θarch. The monomorphization of an expression e produces an
expression and a monomorphic set of nodes corresponding to the monomorphization of
the nodes potentially called by e. This means that in turn, the monomorphization of
an equation (resp., node) produces an equation (resp., node) and a monomorphic set of
nodes.

In order to monomorphize a program, we only need to monomorphize its main node,
providing concrete directions

⇀

dir and word sizes ⇀
m as inputs to the transformation. The

monomorphization of main then triggers the monomorphization of the nodes it calls,
and so on. Any node that is not in the call graph of main will not be monomorphized
and is discarded.

To monomorphize a node, its direction and word size parameters are instantiated
with the concrete directions

⇀

dir and word sizes ⇀
m provided. We also check that the

monomorphic signature Θarch is sufficient to implement the operator signature Θ spe-
cialized to

⇀

dir and ⇀
m. This ensures that the operators used in the node exist on the

architecture targeted by the compilation. We note f
⇀
dir
⇀
m

the name of the specialized node.

Monomorphization may only fail at the top level, when specializing main: we ask
that directions

⇀

dir and word sizes ⇀
m are fully applied and that Θarch provides all opera-

tors of the signature of main specialized to
⇀

dir and ⇀
m.

Each of the n equations of a node is also monomorphized, which produces n sets
of nodes

⇀

nd1,
⇀

nd2 ...
⇀

ndn. We absorb potential duplicates by taking their union. Note

that two monomorphic nodes with the same name f
⇀
dir
⇀
m

have necessarily been monomor-
phized with the same concrete directions and word sizes and thus have the same seman-
tics.

Monomorphization proceeds structurally over expressions (rules CONST, VAR, TUPLE, OP

APP, NODE APP).

Monomorphizing an operator application op e (rule OP APP) only requires monomor-
phizing its argument e. Typing ensures that op was in the node’s operator signature Θ,
while monomorphization of a node (rule NODE) ensures that Θ is compatible with the
architectures operator signature Θarch; we are guaranteed that op : π ∈ Θarch.

Finally, monomorphizing a node application (rule NODE APP) f
⇀

dir
⇀
m e triggers the

monomorphization of f with the concrete direction
⇀

dir and word size parameters ⇀
m,

which produces a specialized version f
⇀
dir
⇀
m

of f .

Example 3.3.1. Consider the following program:

node f : ∀ δ ω {ˆ : uδω → uδω} ⇒ (x :i uδω, y :i uδω)→ (z :o uδω) =
z = x ˆ y

node main : {} ⇒ (a :i uV 32, b :i uV 32, c :i uH16, d :i uH16, e :i uV 32, f :i uV 32)
→ (u :o uV 32, v :o uH16, w :o uV 32) =

u = f V 32 (a, b);
v = f H 16 (c, d);
w = f V 32 (e, f)

Monomorphizing main (with respect to an ambient signature Θarch = {ˆ : uV 32 →
uV 32 → uV 32,ˆ : uH16 → uH16 → uH16} providing an instance of xor for uV 32 and
another one for uH16) produces the following program:
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node fV32 : (x :i uV 32, y :i uV 32) → (z :o uV 32) =
z = x ˆ y

node fH16 : (x :i uH16, y :i uH16)→ (z :o uH16) =
z = x ˆ y

node main : (a :i uV 32, b :i uV 32, c :i uH16, d :i uH16, e :i uV 32, f :i uV 32)
→ (u :o uV 32, v :o uH16, w :o uV 32) =

u = fV32 (a, b);

v = fH16 (c, d);

w = fV32 (e, f)

We conjecture that monomorphization is sound. That is, if a program type-checks,
and the monomorphization of this program succeeds, then the resulting program type-
checks as well:

Conjecture 1 (Soundness of monomorphization). Let pgm be a well-typed program in the
empty context (` pgm). Let Θarch be a valid operator signature provided by a given architecture.
Let

⇀

dir and ⇀
m be concrete directions and word sizes. Let pgm’ be a monomorphic program such

thatMΘarch(pgm)

⇀
dir,

⇀
m
 pgm’. Then, we have Θarch ` pgm’.

3.4 Semantics

Figure 3.7a gives an interpretation of types as set-theoretic objects. The semantics of
a function type is a (mathematical) function mapping elements from its domain to its
codomain. The semantics of a tuple is a Cartesian product of values. The semantics of an
atom uDm is a value that fits in m bits. Finally, the semantics of an operator signature is
a map from operators to functions.

The semantics of programs (Figure 3.7b) is parameterized by ρ, a map from operators
to mathematical functions, which assign their meaning to the operators:

ρ ::= ((op, π) 7→ (
⇀
c→ c))∗

An expression denotes a tuple of integers, provided an operator environment ρ, an
equation environment ⇀

eqn (that corresponds to the equations of the enclosing node) and
the overall program pgm. The semantics of a variable x in the equation environment
⇀
eqn is the value associated to x in the mapping created by J ⇀

eqnK. This definition is well-
founded since equations are totally ordered.

We assume that operators are typed, even though, for simplicity, we ignored this
aspect so far. In practice, we can get the type of any expressions (and operators) using
the rules introduced in Figure 3.5. The semantics of an operator application is defined
through ρ, which provides an implementation of the operator at a given type on a given
architecture. Note that the semantics is guided by types (as well as syntax): ρmay contain
several implementations of a given operators at different types (e.g., 16-bit and 32-bit
addition, or vsliced and hsliced 16-bit rotation).

The semantics of an equation is then defined as a mapping from variables to values.
Straightforwardly, the semantics of a set of equations ⇀

eqn is defined as the union of the
semantics of its equations eqnj . The semantics of a node f is a function from a tuple of
inputs to a tuple of outputs. To relate the formal inputs

⇀

i to the actual inputs ⇀
n, we extend

the equational system with
⇀

i =
⇀
n and compute the resulting denotation. The outputs of

the node are obtained by filtering out inputs and local variables. Finally, the semantics of
a program pgm corresponds to the semantics of its main node.
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Jτ → τ ′K = {f | ∀v ∈ JτK, f(v) ∈ Jτ ′K}
J⇀τK = {(v0, ..., vN ) | vj ∈ JτiK}

JuDmK = {n | 0 ≤ n < 2m}
JΘK = {(opπ 7→ JΘ(opπ)K) | opπ ∈ Θ}

(a) Semantics of types

JeK : env → ⇀
eqn→ pgm→ eqn→ ⇀

n

ρJnK
⇀
eqn
pgm = n

ρJxK
⇀
eqn
pgm = ρJ ⇀

eqnK
⇀
eqn
pgm

∣∣∣
x

ρJ⇀eK
⇀
eqn
pgm =

−−−−−⇀
ρJeK

⇀
eqn
pgm

ρJopπ eK
⇀
eqn
pgm = ρ(opπ) ρJeK

⇀
eqn
pgm

ρJf eK
⇀
eqn
pgm = ρJpgm(f)Kpgm ρJeK

⇀
eqn
pgm

JeqnK : env → pgm→ ⇀
eqn→ eqn→ −−−−−⇀var → n

ρJ⇀x = eK
⇀
eqn
pgm = let

⇀

e′ = ρJeK
⇀
eqn
pgm in {xj ← e′j | j ∈ [0, |⇀x|]}

J ⇀
eqnK : env → pgm→ ⇀

eqn→ −−−−−⇀var → n

ρJ ⇀
eqnKpgm =

⋃ρJeqnjK
⇀
eqn
pgm

JndK : env → pgm→ nd→ ⇀
n→ ⇀

n

ρJnode f : (
−−−⇀
i :[ τ)→ (

−−−−⇀
o :] τ

′) =
⇀
eqnKpgm

⇀
n = let

⇀
eqn
′
= (

⇀

i =
⇀
n,

⇀
eqn) in ρJ

⇀

eqn′Kpgm
∣∣∣
o]=o

JpgmK : env → ⇀
n→ ⇀

n

ρJpgm,mainK ⇀
n = ρJmainKpgm

⇀
n

(b) Semantics of programs and expressions
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ρ is a valid implementation of an operator signature Θarch if and only if ρ provides all
the operators specified by Θarch:

ρ � Θ ⇐⇒ ∀op ∈ Θarch, ρ(op) ∈ JΘarch(op)K

A program has a semantics with respect to an operator signature Θarch when, for all valid
implementations ρ of Θarch, the main node has a semantics:

Θarch � pgm,main ⇐⇒ ∀ρ � Θarch,
ρJmainKpgm ∈ Jtypeof(main)K

where typeof(node f : σ =
⇀
eqn) = σ.

Our type system is adequate with respect to this (monomorphic) semantics if it satis-
fies the following property:

Conjecture 2 (Fundamental theorem of monomorphic programs). Let pgm be a monomor-
phic program and Θarch a valid operator signature provided by a given architecture. If pgm
type-checks in Θarch, then pgm has a semantics with respect to Θarch, i.e.,

Θarch ` pgm =⇒ Θarch � pgm

If both Conjecture 1 and Conjecture 2 are true, then a program that monomorphizes
admits a semantics:

Corollary 1. Let pgm be a program that type-checks in the empty context. Let Θarch be a valid
operator signature provided by a given architecture. Let

⇀

dir and ⇀
m be concrete directions and

word sizes. Let pgm’ be a monomorphic program such thatMΘarch(pgm)

⇀
dir,

⇀
m
 pgm’. We have

Θarch � pgm’ that defines the semantics of pgm through monomorphization.

3.5 Usuba0

Usuba0 is a strict subset of Usubamono, closer to C, and thus easier to translate to C. Com-
pared to Usubamono, expressions in Usuba0 are not nested (put otherwise, the definition
of expressions is not recursive), and Usuba0 prevents the use of tuples in expressions as
well as on the left-hand side of equations (except in the case of node calls):

eqn0 ::= equation
| x = e0 (assignment)

| x = op
⇀

e0 (operator call)

| ⇀
x = f

⇀

e0 (node call)
e0 ::= expressions

| n (constant)
| x (variable)

Usubamono is converted into Usuba0 by a semantics-preserving transformation called
normalization (Specification 1). Normalization is applied to a monomorphic Usubamono

program before translating it to PseudoC. We describe its implementation in Section 4.1.

Specification 1 (Normalization). Let pgm be a monomorphic Usubamono program that
type-checks with respect to an architecture operator signature Θarch. Let ρ � Θarch be
an operator environment that implements Θarch. Normalization, written N , is a trans-
formation that converts any monomorphic Usubamono program pgm into an equivalent
Usuba0 program, i.e., ρJpgmK = ρJN (pgm)K.
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We also specify equation scheduling (Specification 2) as the process of sorting the
equations of all nodes according to their dependencies, in anticipation of their translation
to imperative assignments.

Specification 2 (Scheduling). Let pgm be an Usuba0 program that that has a semantics
with respect to an operator environment ρ. Scheduling, written S, is a transformation
that converts any Usuba0 program pgm into an equivalent Usuba0 program, such that
ρJpgmKpgm = ρJS(pgm)Kpgm, and, that all equations of all nodes of S(pgm) are sorted
according to their dependencies.

3.6 Translation to PseudoC

We formalize an imperative language close to C as our target, which we shall call Pseu-
doC. PseudoC is inspired by the Clight [82, 81] language, a subset of C, used as source
language for the CompCert compiler. However, PseudoC is a stripped down variant of
Clight: we do not include for loops, pointer arithmetic, structures or arrays. The seman-
tics of operators in PseudoC also differs from Clight since we do not fix the underlying
architecture.

3.6.1 Syntax

Figure 3.8 describes the syntax of PseudoC. A PseudoC program is a list of function dec-
larations. Functions are of type void (returned values are always passed back through
pointers). Functions contain two kinds of typed variable declarations: parameters and
local variables. Similarly to Clight, we prevent function calls from appearing within ex-
pressions. Expressions are thus free of side-effects (since no primitive performs any side-
effect). Primitives are annotated with an integer n representing the size of their argument
(e.g., 128 for a 128-bit SSE vector, 256 for a 256-bit AVX vector), as well as an integer m
containing the size of the atom they manipulate. For instance, the primitive +128

8 repre-
sents a vector addition performing 16 8-bit additions.

3.6.2 Semantics

We model the memory using a collection of blocks. A memoryM is a collection of blocks,
each containing a single value (of varying size), and indexed using integers. This model
is inspired by the one proposed by Leroy and Blazy [200] and used for the semantics of
Clight [81]. However, Leroy and Blazy [200] allow for addresses to point within a block
(an address is a pair (address,offset)), whereas thanks to the lack of arrays and structures
in our language, blocks are always addressed with offset 0.

Statements are evaluated within a global environment Ξ containing all functions of
the program, and an environment γ that assigns their meaning to primitives. Within a
function, a local environmentE maps local variables to references of memory blocks con-
taining their values. Figure 3.9 defines the structure of the environments and memories.

The value of a local variable id can thus be retrieved by doing M(E(id)) (rule VAR in
Figure 3.10). Similarly, talking the address of a variable id using the & operator is done
with a simple E(id) (rule REF). Dereferencing a variable, on the other hand, requires to
get the value of the variable (which represents an address), and get the value stored at
this address, or put otherwise, doing M(M(E(i))) (rule DEREF).

Notably, thanks to the lack of side-effect in expressions, the memory M used to eval-
uate an expression e is not changed by the evaluation of e (rules CONST, DEREF, REF, VAR,
PRIM). Conversely, statements update the memory.
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prog ::=
⇀

fd program

fd ::= void id(
⇀
decl) {

⇀
decl;

⇀
stmt } function definition

decl ::= id variable declaration

stmt ::= statements
| var ← expr (assignment)
| f (

⇀
expr) (function call)

expr ::= expressions
| prim( ⇀

expr) (primitive call)
| c (constant)
| & id (reference)
| var (variable)

var ::= id (simple variable)
| *id (dereference)

prim ::= primitive
| ˜nm | &nm | |nm | ˆnm | (bitwise operators)
| +nm | -nm | *nm | (arithmetic operators)
| >>nm | <<nm | >>>nm | <<<nm | (shifts)
| shufflenm (shuffle)
| bitmasknm (bitmask)
| packnm (pack)
| broadcastnm (broadcast)

Figure 3.8: Syntax of PseudoC

In order to evaluate statements, we introduce the function storeval(M,E, var, c),
which stores c at addressM(E(var)) if var is a simple identifier, and at addressM(M(E(var)))
if var is a pointer dereference (i.e., of the form ∗id):

storeval(M,E, ∗id, c) = M(M(E(id)))← c

storeval(M,E, id, c) = M(E(id))← c

Note that a variable on the left-hand side of an assignment cannot be a reference (i.e., of
the form &id).

Evaluating an assignment var ← e (rule ASGN) thus straightforwardly evaluates e
and stores the result into in the memory using storeval.

When calling a function (rule FUNCALL), the caller allocates memory for the param-
eters and local variables using the alloc vars(M,

⇀

decl) function. This function allocates
a block of type sizeof(τj) bits for each declaration declj : τj of

⇀

decl and returns a new
environment E′ mapping the parameters’ identifiers to indices of M ′, as well as all of the
indices

⇀

idx of all the new blocks allocated. The function bind params(E,M,
⇀

decl,
⇀
c) then

binds the formal parameters to the values of the corresponding arguments by iterating
the storeval function. The body of the function is then evaluated in the new environ-
ment E′, thus producing a new memory M3. Finally, the blocks allocated by alloc vars

are freed using the free(M,
⇀

idx) function.
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c ∈ N values (representing both integers and addresses)
Ξ ::= (id 7→ fd)∗ map from identifiers to functions
E ::= (id 7→ c)∗ map from identifier to addresses
M ::= (c 7→ c)∗ map from addresses to values
γ ::= ((op, n, n) 7→ (

⇀
c→ c))∗ map from primitives to functions

Figure 3.9: PseudoC’s semantics elements

γ,E ` e,M ⇓ c

γ,E ` c,M ⇓ c
CONST

γ,E ` ∗id,M ⇓M(M(E(id)))
DEREF

γ,E ` &id,M ⇓ E(id)
REF

γ,E ` id,M ⇓M(E(id))
VAR

γ,E ` ej ,M ⇓ cj ` γ(prim)(
⇀
c) ⇓ c

γ,E ` prim(
⇀
e),M ⇓ c

PRIM

γ,Ξ, E ` stmt,M ⇓M

γ,E ` e,M ⇓ c storeval(M,E, var, c) = M ′

γ,Ξ, E ` var ← e,M ⇓M ′
ASGN

γ,E ` ej ,M ⇓ cj
voidf(decl1){decl2;

⇀

stmt} ∈ Ξ

alloc vars(M,decl1 ∪ decl2) = (E′,M1,
⇀

idx)
bind params(E′,M1, decl1,

⇀
c) = M2

γ,Ξ, E′ `
⇀

stmt,M2 ⇓M3 free(M3,
⇀

idx) = M ′

γ,Ξ, E ` f(
⇀
e),M ⇓M ′

FUNCALL

γ,Ξ, E `
⇀

stmt,M ⇓M

γ,Ξ, E ` stmtj ,Mj ⇓Mj+1

|
⇀

stmt| = n M0 = M M ′ = Mn

γ,Ξ, E `
⇀

stmt,M ⇓M ′
SEQ

Figure 3.10: Semantics of PseudoC
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3.6.3 Translation from Usuba0 to PseudoC

Figure 3.11 describes the translation from Usuba0 to PseudoC. The Usuba0 program is
assumed to have been scheduled prior to this translation (using the transformation S
specified in Specification 2). As a result, we simply process equations in textual order.
Nodes are translated to procedures, returning values through pointers rather than using
a return statement.

The return values σ|]=o of a node f : σ =
⇀
eqn are compiled to pointer parameters

(declared with a *). As a consequence, whenever a variable is used in the Left-hand
side of an assignment, we use the rule Lσ that dereferences pointers (i.e., variables that
are in σ|]=o of the Usuba0 node we are compiling) if needed. Similarly, the rule Rσ is
used to compile expressions (on theRight-hand side of an assignment), and dereferences
pointers.

Additionally, constants and constant variables (that is, variables in σ|]=L) must be
broadcasted to vectors using a broadcast primitive. Intuitively, a SIMD broadcast takes
as input a scalar c and creates a vector containing multiple copies of c. The amount of
copies is determined by the broadcast instruction (e.g., mm256 set1 epi64 creates 4
copies in an AVX vector, mm set1 epi8 creates 16 copies in a SSE vector). The exact
semantics of the broadcast generated when translating from Usuba0 to PseudoC will be
defined in γ when evaluating the PseudoC program.

Function calls must take pointers to variables to return values. We use the Pσ helper
to compile the left-hand side of a function call to Pointers: variables that are in σo of the
current node are already pointers and we do not need to take their addresses.

Finally, Usuba0’s scalar operators are lifted to the architecture arch used for the trans-
lation using the function liftmarch(e). We introduce the auxiliary functions arch size(arch)
to get the size of the vectors of an architecture arch:

arch size(SSE) = 128
arch size(AVX) = 256

arch size(AVX512) = 512
...

We also introduce the function arch op, which maps Usuba0 operators to the operators of
an architecture arch, defined as arch op(arch,m, op) = op

arch size(arch)
m . arch op is defined

for all operators of Usuba0 as well as broadcast.
liftmarch(e) is then defined as iterating structurally over e and replacing each operator op
with oparch size(arch)

m .

3.6.4 Compiler Correctness

We define the function arch parallelism(arch,m) to be equal to the number of elements of
type um that can be packed in a register of the architecture arch. This function is defined
as arch parallelism(arch,m) = arch size(arch)/m. For instance:

arch parallelism(SSE,m) = 128/m ∀m ∈ {1, 8, 16, 32, 64}
arch parallelism(AVX,m) = 256/m ∀m ∈ {1, 8, 16, 32, 64}

arch parallelism(AVX512,m) = 512/m ∀m ∈ {1, 8, 16, 32, 64}

We also define the function transpose which, for a given architecture arch, takes a
tuple ⇀

c of k ∗ N values of type um where N = arch parallelism(arch,m), and returns the
transpose of ⇀

c in the form of a tuple of k values of type vector type(arch).
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Carch(
⇀

nd) =
⇀

fd

Carch(
⇀

nd) =
−−−−−−⇀
Carch(nd)

Carch(nd) = fd

Carch(node f : σ =
⇀
eqn) = void f(Carch(σ|[), Carch(σ|]=o)) {Carch(σ|]=L);

−−−−−−−⇀
Cσarch(eqn)}

Carch(x : τ) = id

Carch(x [ τ) = x

Carch(x ] τ) =

{
x if ] = L
∗ x otherwise

Carch(eqn) = stmt

Cσarch(
⇀
xo = f(

⇀
e)) = f(Cσarch(

⇀
e),Pσ(

⇀
xo))

Cσarch(x = e) = Lσ(x)← Cσarch(e)

Cσarch(x = op(
⇀
e) : um) = Lσ(x)← liftmarch(op(

−−−−−⇀
Carch(e)))

Carch(e) = expr

Cσarch(c : um) = liftmarch(broadcast(c))

Cσarch(x) = Rσarch(x)

with

Lσ(x) =

{
∗x if (xo :o uDm) ∈ σ
x otherwise

Rσarch(x) =


liftmarch(broadcast, x) if (x :K uDm) ∈ σ
∗x if (x :o τ) ∈ σ
x otherwise

Pσ(x) =

{
x if (x :o τ) ∈ σ
&x otherwise

Figure 3.11: Translation rules from Usuba0 to PseudoC
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Definition 1 (Valid vectorized support). Let arch be an architecture providing an opera-
tor signature Θarch, and ρ a valid implementation of Θarch. γ is a valid vectorized support
for ρ if and only if,

∀op : uDm× ...× uDm→ uDm ∈ Θarch, ∀
⇀
c0, ...,

⇀
cN−1 ∈ JuDmK,

γ(opNm)(transpose(⇀
c0, ...,

⇀
cN−1)) = transpose(ρ(op)(

⇀
c0), ..., ρ(op)(

⇀
cN−1)

with N = arch parallelism(arch,m)

meaning that γ(op) is a valid, semantic-preserving, vectorized variant of ρ(op).

We can then formulate the correctness of our translation scheme from Usuba0 to
PseudoC as follows:

Conjecture 3 (Translation correctness). Let pgm be a monomorphic Usuba0 program that
type-checks with respect to an operator signature Θarch provided by an architecture arch. Let
main be the main node of pgm, and let σ = typeof(main) be its type.
Let Ξ = Carch(pgm) be the compiled program. Let E and M be the initial execution environment
defined as (E,M) = alloc vars(∅,

⇀

σ|]=o). Assume, for simplicity, that main’s inputs are all
of type um, and let N = arch parallelism(arch,m).
Let ρ be a valid implementation of Θarch, and let γ be a valid vectorized support of ρ.
We have that, for all constants ⇀

c ∈ Jσ|[=KK, and for all inputs (
⇀

vino , ...,
⇀

vinN−1) ∈ Jσ|]=oKN ,

∧ . γ,Ξ, E ` Ξ(main)(
⇀
c, transpose(

⇀

vino , ...,
⇀

vinN−1),M ⇓M ′

∧ . M ′(E(σ|]=o)) = transpose(ρJpgmK(⇀c,
⇀

vino ), ...,ρ JpgmK(⇀c,
⇀

vinN−1))

meaning that executing the PseudoC program processes N values at a time, producing a memory
whose content agrees with the Usuba0 semantics.

One of the key elements of our programming model is that we assume that there is an
arbitrarily large amount of input blocks to process. This ensures that there are enough
input blocks for the compiled program to process N of them in parallel.

Conjecture 3 holds for any monomorphic program pgm that type-checks in an op-
erator signature Θarch. Remember from Conjecture 2 that this implies that pgm has a
semantics with respect to Θarch. Compiler correctness follows from Corollary 1 and Con-
jecture 3 as follows:

Corollary 2 (Compiler correctness). Let pgm be an Usubacore program that type-checks in
the empty context. Let Θarch be an operator signature provided by an architecture arch, and

⇀

dir
and ⇀

m concrete directions and word sizes such that

MΘarch(pgm)

⇀
dir,

⇀
m
 pgm’

Let pgm” = S(N (pgm’)).
Let Ξ = Carch(pgm”) be the compiled program. Then, the semantics of Ξ agrees with the seman-
tics of pgm” for any valid implementation ρ of Θarch, any valid vectorized support of ρ, and any
well-formed input.
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Type-classes. Section 2.3 gives an informal semantics of Usuba using type-classes. These
type-classes can be understood as the concrete implementations of Θarch, ρ and γ used by
the compiler: for a given architecture arch, a type-class provides a collection of operators
with a given signature (' Θarch), a semantics (' ρarch) and an implementation (' γarch).
Consider, for instance, the Shift type-class for AVX2. It provides the following operator
signature ΘAVX2:

>>n : uV 16→ uV 16 ∀n ∈ [0, 15]
>>n : uV 32→ uV 32 ∀n ∈ [0, 31]
>>n : uV 64→ uV 64 ∀n ∈ [0, 63]

...

It also gives a semantics to each operator (ρAVX2):

>>uV 16→uV 16
n → 16-bit right-shift by n places ∀n ∈ [0, 15]

>>uV 32→uV 32
n → 32-bit right-shift by n places ∀n ∈ [0, 31]

>>uV 64→uV 64
n → 64-bit right-shift by n places ∀n ∈ [0, 63]

...

Finally, it provides a vectorized semantics of the operators for several architectures (i.e.,
a vectorized support γAVX2 of ρAVX2):

>>256
16 → 16 16-bit right-shifts (vpsllw)

>>256
32 → 8 32-bit right-shifts (vpslld)

>>256
64 → 4 64-bit right-shifts (vpsllq)

...

Note that type-classes are coarser than strictly necessary: an Usuba code relying on
32-bit right-shifts only requires Θarch to provide a 32-bit right-shift, rather than 16-bit,
32-bit and 64-bit left and right shifts and rotations (as the Shift type-class provides).
Nonetheless, we chose to group similar operations in type-classes since they are provided
together by an architecture: the availability of a 32-bit left-shift implies the availability of
a 32-bit right-shift, as well as 32-bit left and right rotations.

3.7 Conclusion

In this chapter, we formally described the Usuba language, from its type system, monomor-
phization and semantics, to its compilation to an imperative language.

Notably, we provided a semantics of Usubamono rather than Usuba, which is not fully
satisfying. Several constructions of Usuba are thus specified by elaboration to Usubacore

(e.g., loops, vectors, imperative assignments, lookup tables), and the semantics of poly-
morphic Usubacore programs is not defined for programs that do not monomorphize.
Furthermore, as we will show in Chapter 6, loops and vectors are essential to produce
efficient code on embedded devices. In practice, we thus keep loop and vectors in the
pipeline, leaving the compiler free to expand vectors and loops as needed.



Chapter 4

Usubac

The Usubac compiler consists of two phases: the frontend (Section 4.1), whose role is to
distill the high-level constructs of Usuba into a low-level minimal subset of Usuba, called
Usuba0 (already introduced in Section 3.5, Page 83), and the backend (Section 4.2), which
performs optimizations over the core language. In its final pass, the backend translates
Usuba0 to C code with intrinsics. The whole pipeline is shown in Figure 4.1. The “Mask-
ing” and “tightPROVE+” passes add countermeasures against power-based side-channel
attacks in the code generated by Usubac. They are both optional, and are presented in
Chapter 6.

4.1 Frontend

The frontend extends the usual compilation pipeline of synchronous dataflow languages
[71, 268], namely normalization (Specification 1, Page 83) and scheduling, with domain-
specific transformations. Normalization enforces that, aside from nodes, equations are

source .ua Usuba AST
parsing Typed 

Usuba AST

Type-checking

Usuba0 AST

Normalization

Masking

Usuba0 AST

Optimizations

Front-end

Back-end

C file

Code 
generation

binary
gcc/clang/icc

tightPROVE⁺

Figure 4.1: Usubac’s pipeline
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restricted to defining variables at integer type. Scheduling checks that a given set of equa-
tions is well-founded and constructively provides an ordering of equations for which a
sequential execution yields a valid result. In our setting, scheduling has to be further re-
fined to produce high-performance code: scheduling belongs to the compiler’s backend
(Section 4.2.5).

Several features of Usuba require specific treatment by the frontend. The language
offers domain-specific syntax for specifying cryptographic constructs such as lookup ta-
bles or permutations, which boil these constructs down to Boolean circuits (Section 2.2,
Page 51). Tuples, vectors, loops and node calls also require some special transformations
in order to facilitate both optimizations and generation of C, as we show in the following.

4.1.1 Vectors

Section 3.1 (Page 74) defines vectors through elaboration to Usubacore. However, to
achieve good performance on embedded platforms, vectors are essential. Such plat-
forms offer only a few kilobytes of memory, and fully unrolling loops and nodes would
produce too large programs. Keeping nodes throughout the pipeline without keeping
vectors would produce inefficient code. Consider for instance, consider RECTANGLE’s
ShiftRows node, whose bitslice signature is

node ShiftRows (input:b1[4][16]) returns (out:b1[4][16])

If input and out were to be expanded, ShiftRows would take 64 parameters as input,
which would require 64 instructions to push on the stack, and 64 to pop. Instead, by keep
its input as a vector throughout the pipeline, and eventually producing a C array when
generating C code, the overhead of calling this function is almost negligible.

Even when targeting Intel CPUs, some ciphers perform better when they are not fully
inlined and unrolled, as shown in Section 4.2.4.

Consequently, we keep loops and vectors throughout the Usubac pipeline. Usubac is
still free to unroll and expand any array it sees fit, but is under no obligation to do this
for all of them. Semantically, Usubac proceeds over vectors as it does over tuples, the
difference between the two being only how they are compiled: a vector becomes a C
array, while a tuple becomes multiple C variables or expressions.

Node calls. When keeping vectors non-expanded, we need to make sure that the types
of node calls arguments are identical to the types of the node parameters. Indeed, from
Usuba’s standpoint, given a variable x of type b1[2], both node calls f(x[0],x[1]) and
f(x) are equivalent. Similarly, a variable a of type b1[2][4] is equivalent to a variable
of type b1[8]. However, when generating C, those expressions are different, and only
one of them can be valid: passing two arguments to a C function that expects only one is
not allowed.

Usubac thus ensures that arguments of a node call have the same syntactic type as
expected by the node, and that node calls have the same amount of arguments as ex-
pected by the node. If not, Usubac expand array until the types are correct. Consider, for
instance:
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node g(a,b:b1[2]) returns (r:b1[2][2])
let

r[0][0] = a[0];
r[0][1] = a[1];
r[1][0] = b[0];
r[1][1] = b[1];

tel

node f(a:b1[4]) returns (r:b1[4])
let

r = g(a)
tel

Such a program will be normalized by Usubac to:

node g(a0,a1,b0,b1:b1) returns (r:b1[4])
let

r[0] = a0;
r[1] = a1;
r[2] = b0;
r[3] = b1;

tel

node f(a:b1[4]) returns (r:b1[4])
let

r = g(a[0],a[1],a[2],a[3])
tel

4.1.2 Tuples

Operations on Tuples

As shown in Section 2.3 (Page 54), logical and arithmetic operations applied to tuples are
unfolded. For instance, the last instruction of RECTANGLE is:

cipher = round[25] ˆ key[25]

where cipher, round[25] and keys[25] are all of type u16[4]. Thus, this operation is
expanded by the frontend to:

cipher[0] = round[25][0] ˆ key[25][0]
cipher[1] = round[25][1] ˆ key[25][1]
cipher[2] = round[25][2] ˆ key[25][2]
cipher[3] = round[25][3] ˆ key[25][3]

Shifts and rotations involving tuples are performed by the frontend. For instance, the
ShiftRows node of RECTANGLE contains the following rotation:

out[1] = input[1] <<< 1;

In bitslice mode, out[1] and input[1] are both tuples of type b1[16]. Usubac thus
expands the rotation and this equation becomes:

out[1] = (input[1][1], input[1][2], input[1][3], input[1][4],
input[1][5], input[1][6], input[1][7], input[1][8],
input[1][9], input[1][10], input[1][11], input[1][12],
input[1][13], input[1][14], input[1][15], input[1][0])
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Tuple Assignments

Assignments between tuples are expanded into assignments from atoms to atoms. This
serves three purposes: first, Usubac will eventually generate C code, which does not
support tuple assignment. Second, this makes optimizations more potent; in partic-
ular copy propagation and common subexpression elimination. Third, doing this be-
fore the scheduling pass (Section 4.2.5) allows a tuple assignment to be scheduled non-
contiguously. The previous example is thus turned into:

(out[1][0], out[1][1], out[1][2], out[1][3],
out[1][4], out[1][5], out[1][6], out[1][7],
out[1][8], out[1][9], out[1][10], out[1][11],
out[1][12], out[1][13], out[1][14], out[1][15]) =

(input[1][1], input[1][2], input[1][3], input[1][4],
input[1][5], input[1][6], input[1][7], input[1][8],
input[1][9], input[1][10], input[1][11], input[1][12],
input[1][13], input[1][14], input[1][15], input[1][0])

which is then expanded into:

out[1][0] = input[1][1];
out[1][1] = input[1][2];
out[1][2] = input[1][3];
out[1][3] = input[1][4];
out[1][4] = input[1][5];
out[1][5] = input[1][6];
out[1][6] = input[1][7];
out[1][7] = input[1][8];
out[1][8] = input[1][9];
out[1][9] = input[1][10];
out[1][10] = input[1][11];
out[1][11] = input[1][12];
out[1][12] = input[1][13];
out[1][13] = input[1][14];
out[1][14] = input[1][15];
out[1][15] = input[1][0];

4.1.3 Loop Unrolling

As mentioned in Section 3.7 (Page 90), Usubac is free to keep loops throughout its pipeline.
The decision to inline loops or not is made in the backend, and will be discussed in Sec-
tion 4.2.3. However, in two cases, unrolling is necessary to normalize Usuba down to
Usuba0, and is thus performed by the frontend. The first case corresponds to shifts and
rotations on tuples that depends on loop variables. For instance,

forall i in [1, 2] {
(x0,x1,x2) := (x0,x1,x2) <<< i;

}

Since rotations on tuples are resolved at compile time, this rotation requires the loop to
be unrolled into

(x0,x1,x2) := (x0,x1,x2) <<< 1;
(x0,x1,x2) := (x0,x1,x2) <<< 2;

which is then simplified to

(x0,x1,x2) := (x1,x2,x0);
(x0,x1,x2) := (x2,x0,x1);
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which will be optimized away by copy propagation in the backend.
Unrolling is also needed to normalize calls to nodes from arrays of nodes within

loops. This is for instance the case with SERPENT, which uses a different S-box for each
round, and whose main loop is thus:

forall i in [0,30] {
state[i+1] = linear_layer(sbox<i%8>(state[i] ˆ keys[i]))

}

which, after unrolling, becomes:

state[1] = linear_layer(sbox0(state[0] ˆ keys[0]))
state[2] = linear_layer(sbox1(state[1] ˆ keys[1]))
state[3] = linear_layer(sbox2(state[2] ˆ keys[2]))
...

Note that we chose to exclude both shifts on tuples and arrays of nodes from Usuba0
because they would generate suboptimal C code, which would rely on the C compilers
to be willing to optimize away those constructs. For instance, we could have introduced
conditionals in Usuba in order to normalize the first example (tuple rotation) to

forall i in [1,2] {
if (i == 1) {

(x0,x1,x2) := (x1,x2,x0);
} elsif (i == 2) {

(x0,x1,x2) := (x2,x0,x1);
}

}

And the second example (array of nodes) to

forall i in [0,30] {
if (i % 8 == 0) {

state[i+1] = linear_layer(sbox0(state[i] ˆ keys[i]))
} elsif (i % 8 == 1) {

state[i+1] = linear_layer(sbox1(state[i] ˆ keys[i]))
} elsif

...
}

}

This Usuba0 code would then have been compiled to C loops. However, to be efficient,
it would have relied on the C compiler unrolling the loop in order to remove the con-
ditionals and optimize (e.g., with copy propagation) the resulting code. In practice, C
compilers avoid unrolling large loop, and performing the unrolling in Usuba leads to
better and more predictable performance.

4.1.4 Flattening From mslicing to Bitslicing

We may also want to flatten a msliced cipher to a purely bitsliced model. Performance-
wise, it is rarely (if ever) interesting: the higher register pressure imposed by bitslicing
is too detrimental. However, some architectures (such as 8-bit microcontrollers) do not
offer vectorized instruction sets at all. Also, bitsliced algorithms can serve as the basis
for hardening software implementations against fault attacks [193, 240]. To account for
these use-cases, Usubac can automatically flatten a cipher into bitsliced form. Flattening
is a whole-program transformation (triggered by passing the flag -B to Usubac) that
globally rewrites all instances of vectorial types uDm× n into the type bm[n] (shorthand
for uD1×m[n], equivalent to uD1[n][m]). Note that the vectorial direction of the source
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is irrelevant: it collapses after flattening. The rest of the source code is processed as-
is: we rely solely on ad-hoc polymorphism to drive the elaboration of the operators at
the rewritten types. Either type checking and monomorphization succeeds, in which
case we have obtained the desired bitsliced implementation, or monomorphization fails,
meaning that the given program exploits operators that are not available in bitsliced
form. For instance, short of providing an arithmetic instance on b32, we will not be able
to bitslice an algorithm relying on addition on u32 (such as CHACHA20).

4.2 Backend

The backend of Usubac takes care of optimizing the Usuba0 code and ultimately gener-
ating C code.
Targeting C code allows us to rest on the optimizers of C compilers to produce efficient
code. However, that alone would not be sufficient to achieve throughputs on par with
carefully hand-tuned assembly code.

We divide our optimizations in two categories. The simple ones (common subexpres-
sion elimination, inlining, unrolling) are already done by most C compilers, but we still
perform them in Usuba, mainly in order to improve the potency of the more advanced
optimizations, but also to not rely on the heuristic of C compilers, which were not tai-
lored for sliced code. The more advanced optimizations include two scheduling algo-
rithms (Section 4.2.5), and an interleaving pass (Section 4.2.6). They are key to generate
efficient code on SIMD architectures.

Those advanced optimizations can only be done thanks to the invariants offered
by the Usuba programming model. One of our scheduling algorithms is thus tailored
to reduce spilling in linear layers of bitsliced ciphers, while the other one improves
instruction-level parallelism by mixing linear layers and S-boxes in msliced ciphers.

Usuba’s dataflow programming model is also key for our interleaving optimization:
since node inputs are taken to be (infinite) streams rather than scalars, we are able to
increase instruction-level parallelism by processing several elements of the input stream
simultaneously (Section 4.2.6).

4.2.1 Autotuning

The impact of some optimizations is hard to predict. For example, inlining reduces the
overhead of calling functions, but increases register pressure and produces code that does
not fully exploit the µop cache (DSB). Our interleaving algorithm improves instruction-
level parallelism, at the expense of register pressure. Our scheduling algorithm for bit-
sliced code tries to reduce register pressure, but sometimes increases register pressure in-
stead. Our scheduling algorithm for msliced code increases instruction-level parallelism,
but this sometimes either increase register pressure or simply produces code that the C
compiler is less keen to optimize.

Fortunately, with Usuba, we are in a setting where:

• The compilation time is not as important as with traditional C compilers. The gen-
erated ciphers will likely be running for a long period of time, and need to be op-
timized for performance in order not to bottleneck applications. Also, ciphers are
made of at most dozens of thousands of lines of code, are can thus be executed in a
few milliseconds at most.

• The execution time is independent of the inputs, by construction. While bench-
marking a generic C program requires a representative workload (at the risk of
missing a frequent case), every run of a Usuba program will have the same execu-
tion time, regardless of its inputs.
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Given the complexity of today’s microarchitectures, statically selecting heuristics for
the optimizations is hard. We minimize choices a priori by using an autotuner [299, 140],
which enables or disables optimizations based on accurate data. The autotuner thus
benchmarks heuristic optimizations (inlining, unrolling, scheduling, interleaving), and
keeps only those that improve the execution time (for a given cipher).

4.2.2 Common Subexpression Elimination, Copy Propagation, Constant
Folding

!
The benchmarks of this section are available at:
https://github.com/DadaIsCrazy/usuba/tree/master/experimentations/
code-size-CSECPCF

Common subexpression elimination (CSE) is a classical optimization that aims at pre-
venting identical expressions from being computed multiple times. For instance,

x = a + b;
y = (a + b) * c;

is transformed by CSE into

x = a + b;
y = x * c;

Copy propagation is also a traditional optimization that removes assignments of a
variable into another variable. For instance,

x = a + b;
y = x;
z = y * c;

is transformed by copy propagation into

x = a + b;
z = x * c;

Finally, constant folding consists in computing constant expressions at compile time.
The expressions that Usuba simplifies using constant folding are either arithmetic or
bitwise operations between constants (e.g., replacing x = 20 + 22 by x = 42) or bit-
wise operations whose operand is either 0 or 0xffffffff (e.g., replacing x = a | 0 by
x = a).

CSE, copy propagation and constant folding are already done by C compilers. How-
ever, performing them in Usubac has two main benefits:

• It produces smaller and more readable C code. A non-negligible part of the copies
removed by copy propagation comes from temporary variables introduced by the
compiler itself. Removing such assignments improves readability. This matters
particularly in bitsliced code, which can contain tens of thousands lines of C code
after these optimizations: on average, these optimizations reduce by 67% the num-
ber of C instructions of the bitsliced ciphers generated by Usuba. For instance,
bitsliced ACE goes from 200.000 instructions without these optimizations to only
50.000 with them.

• It makes the scheduling optimizations (Section 4.2.5) more potent, since needless
assignments and redundant expressions increase the number of live variables, which
may throw off the schedulers.

https://github.com/DadaIsCrazy/usuba/tree/master/experimentations/code-size-CSECPCF
https://github.com/DadaIsCrazy/usuba/tree/master/experimentations/code-size-CSECPCF
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4.2.3 Loop Unrolling

Section 4.1.3 (Page 94) showed that Usubac unrolls loops in some cases as part of the nor-
malization. The backend of Usubac automatically unrolls all loops by default. Experi-
mentally, this produce the most efficient code. The user can still use the flag -no-unroll
to disable nonessential unrolling (i.e., unrolling that is not required by the normalization).
In the following, we explain the reasoning behind the aggressive unrolling performed by
Usubac.

Loop unrolling is clearly beneficial for bitsliced ciphers as almost all ciphers use either
permutations, or shifts or rotations to implement their linear layers. After unrolling (and
only in bitslice mode), those operations can be optimized away by copy propagation at
compile time.

For msliced code, the rational for unrolling is more subtle. Very small loops are al-
ways more efficient when unrolled since the overhead of looping negatively impacts
execution time.
Furthermore, unrolling small and medium-sized loops is often beneficial as well because
it allows our scheduling algorithm to be more efficient. Most loops contain data depen-
dencies from one iteration to the next one. Unrolling enables the scheduler to perform
interleaving (Section 4.2.6) to improve performance. Section 4.2.5 also shows the exam-
ple of ACE, which is bottlenecked by a loop and that our scheduling algorithm is able to
optimize by interleaving 3 loops (provided that they are unrolled).

We may want to keep large loops in the final code in order to reduce code size and
maximize the usage of the µop cache (DSB). For instance, in CHACHA20, unrolling the
main loop (i.e., the one that calls the round function) does not offer any performance
improvement (nor does it decrease performance for that matter). However, it is hard to
choose an upper bound above which unrolling should not be done. For instance, the
PYJAMASK cipher contains a matrix multiplication in a loop:

forall i in [0, 3] {
output[i] = mat_mult(M[i], input[i]);

}

After inlining, mat_mult becomes 160 instructions, which is more than the number of
instructions in RECTANGLE’s round (15), or in ASCON’s (32) or in CHACHA20’s (96).
However, those instructions are plagued by data dependencies, and unrolling the loop
in Usuba (Clang chooses not to unroll it on its own) speeds up PYJAMASK by a factor
1.68.

4.2.4 Inlining

! The benchmarks of this section are available at:
https://github.com/DadaIsCrazy/usuba/tree/master/bench/inlining

The decision of inlining nodes is partly justified by the usual reasoning applied in
general-purpose programming languages: a function call implies a significant overhead
that, for very frequently called functions (such as S-boxes, in our case) compensates for
the increase in code size. Furthermore, Usuba’s msliced code scheduling algorithm (Sec-
tion 4.2.5) tries to interleave nodes to increase instruction-level parallelism, and requires
them to be inlined. We thus perform some inlining in Usuba. Figure 4.2 shows the
speedups gained by inlining all nodes on some msliced ciphers, compared to inlining
none, on general purpose x86 registers and AVX2 registers.

The impact of inlining depends on which C compiler is used, and the architecture
targeted. For instance, inlining every node of XOODOO speeds it up by a factor 1.61 on

https://github.com/DadaIsCrazy/usuba/tree/master/bench/inlining
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Figure 4.2: Impact on throughput of fully inlining msliced ciphers
(raw numbers in Table A.1, Page 195)

general purpose x86 register when compiling with GCC, but slows it down by a fac-
tor 0.98 on AVX2 registers when compiling with Clang. Overall, inlining every node
is generally beneficial for performance, delivering speedups of up to ×1.89 (ASCON on
general-purpose x86 registers with GCC), but can sometimes be detrimental and reduce
performance by a few percents.

On AVX2 registers, when compiling with Clang, inlining tends to be slightly detri-
mental, as can be seen from the lower half of the third column. Those ciphers are the
ones that benefit the less from our scheduling optimization, as can be seen from Fig-
ure 4.6 (Page 109). One of the reasons for this performance regression is the fact that
fully inlined AVX code does not use the µop cache (DSB), but falls back to the MITE. On
GIFT compiled with Clang, for instance, when all nodes are inlined, almost no µops are
issued by the DSB, while when no node is inlined, 85% of the µops come from the DSB.
This translates directly into a reduced number of instructions per cycle (IPC): the inlined
version has an IPC of 2.58, while the non-inlined version is at 3.25. The translates into
a mere 0.93 slowdown however, because the fully inlined code still contains 15% fewer
instructions. This is less impactful on general-purpose registers than on AVX because
their instructions are smaller, and the MITE can thus decode more of them each cycle.

Inlining also improves performance of several ciphers that do not benefit from our
scheduling algorithms. For instance, scheduling improves the performance of GIFT,
CLYDE, XOODOO and CHACHA20 on general-purpose registers by merely ×1.01, ×1.02,
×1.03 and ×1.05 (Figure 4.6, Page 109), and yet, fully inlining these ciphers speeds them
up by ×1.69, ×1.16, ×1.25 and ×1.25 (with Clang). In these cases, both Clang and GCC
chose not to be too aggressive on inlining, probably in order not to increase code size too
much, but this came at the expense of performance.
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Bitslicing, however, definitely confuses the inlining heuristics of C compilers. A bit-
sliced Usuba node is compiled to a C function taking hundreds of variables as inputs
and outputs (depending on Usubac’s frontend ability to keep vectors in parameters or
not). For instance, the round function of DES takes 120 arguments once bitsliced. Calling
such a function requires the caller to push hundreds of variables onto the stack while
the callee has to go through the stack to retrieve them, leading to a significant execution
overhead and code size increase. Similarly, a permutation may be compiled into a func-
tion that takes hundreds of arguments and just does assignments, while once inlined, it
is virtually optimized away by copy propagation. C compilers avoid inlining such func-
tions because their code is quite large, missing the fact that they would be later optimized
away. The performance impact of inlining in bitsliced ciphers is shown in Figure 4.3.

Inlining improves performance in all cases, reaching an impressive ×8 speedup for
PYJAMASK on general-purpose registers with GCC. While some of the improvements are
explained by the scheduling opportunities enabled by inlining, most of them are due
to the overhead saved by not calling functions, and by copy propagation being able to
remove unnecessary assignments. One of the takeaways from our (mslice and bitslice)
inlining benchmarks is that heuristics of C compilers for inlining are not suited to Usuba-
generated sliced code.

4.2.5 Scheduling

The C programs generated by Usubac are translated to assembly using C compilers.
While a (virtually) unlimited amount of variables can be used in C, CPUs only offer a
few registers to work with (between 8 and 32 for commonly used CPUs). C variables
are thus mapped to assembly registers using a register allocation algorithm. When more
variables are alive than there are available registers, some variables must be spilled: the
stack is used to temporarily store them.
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Register allocation is tightly coupled with instruction scheduling, which consists in
ordering instructions so as to take advantage of a CPU’s superscalar microarchitecture
[144, 57]. To illustrate the importance of instruction scheduling, consider the following
sequence of instructions:

u = a + b;
v = u + 2;
w = c + d;
x = e + f;

Consider a hypothetical in-order CPU that can compute two additions per cycle. Such
a CPU would execute u = a + b in its first cycle, and would be unable to compute
v = u + 2 in the same cycle since u has not been computed yet. In a second cycle, it
would compute v = u + 2 as well as w = c + d, and, finally, in a third cycle, it would
compute x = e + f. On the other hand, if the code had been scheduled as:

u = a + b;
w = c + d;
v = u + 2;
x = e + f;

it could have been executed in only 2 cycles. While out-of-order CPUs reduce the impact
of such data hazards at run-time, these phenomenons still occur and need to be taken
into account when statically scheduling instructions.

The interaction between register allocation and instruction scheduling is partially due
to spilling, which introduces memory operations. The cost of those additional memory
operations can sometimes be reduced by using an efficient instruction scheduling. Com-
bining register allocation and instruction scheduling can produce more efficient code
that performing them separately [291, 147, 243, 222]. However, determining the optimal
register allocation and instruction scheduling for a given program is NP-complete [275],
and heuristic methods are thus used. The most classical algorithm to allocate registers
are based on graph coloring [102, 102, 93, 281], and bound to be approximate since graph
coloring itself is NP-complete.

Furthermore, C compilers strive to still offer small compilation times, sometimes at
the expense of the quality of the generated code. Both GCC and LLVM thus perform
instruction scheduling and register allocation separately, starting instruction scheduling,
followed by register allocation, followed by some additional scheduling.

Despite reusing traditional graph coloring algorithms, GCC and LLVM’s instruction
schedulers and register allocators are meticulously tuned to produce highly efficient
code, and are the product of decades of tweaking. GCC’s register allocator and instruc-
tion scheduler thus amount to more than 50.000 lines of C code, and LLVM’s to more than
30.000 lines of C++ code.

We cash out on both these works by providing two pre-schedulers, in order to pro-
duce C code that will be better optimized by C compilers’ schedulers and register alloca-
tors. The first scheduler reduces register pressure in bitsliced ciphers, while the second
increases instruction-level parallelism in msliced ciphers.
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Bitslice Scheduler

!
The benchmarks of this section are available at:
https://github.com/DadaIsCrazy/usuba/tree/master/bench/
scheduling-bs and at:
https://github.com/DadaIsCrazy/usuba/tree/master/
experimentations/spilling-bs

In bitsliced code, the major bottleneck is register pressure: a significant portion of the
execution time is spent spilling registers to and from the stack. Given that hundreds of
variables can be alive at the same time in a bitsliced cipher, it is not surprising that C
compilers have a hard time keeping register pressure down. For instance, it is common
for bitsliced ciphers to have up to 60% of their instructions being loads and stores for
spilling, as shown in Figure 4.4. We thus designed a scheduling algorithm that aims at
reducing register pressure (and improve performance) in bitsliced code.

Let us take the example of RECTANGLE to illustrate why bitsliced code has so much
spilling and how this can be improved. RECTANGLE’s S-box can be written in Usuba as:

node sbox (a0, a1, a2, a3 : u32)
returns (b0, b1, b2, b3 : u32)

vars
t1, t2, t3, t4, t5, t6,
t7, t8, t9, t10, t11, t12 : u32

let
t1 = ˜a1;
t2 = a0 & t1;
t3 = a2 ˆ a3;
b0 = t2 ˆ t3;
t5 = a3 | t1;
t6 = a0 ˆ t5;
b1 = a2 ˆ t6;
t8 = a1 ˆ a2;
t9 = t3 & t6;
b3 = t8 ˆ t9;
t11 = b0 | t8;
b2 = t6 ˆ t11

tel

Usubac’s naive automatic bitslicing (Section 4.1.4, Page 95) would replace all u32 with
b32, which would cause the variables to become vectors of 32 boolean elements, thus
causing the operators to be unfolded as follows:

node sbox (a0, a1, a2, a3 : b32)
returns (b0, b1, b2, b3 : b32)

vars ...
let

t1[0] = ˜a1[0];
t1[1] = ˜a1[1];
t1[2] = ˜a1[2];
...
t1[31] = ˜a1[31];
t2[0] = a0[0] & t1[0];
t2[1] = a0[1] & t1[1];
...
t2[31] = a0[31] & t1[31];
...

https://github.com/DadaIsCrazy/usuba/tree/master/bench/scheduling-bs
https://github.com/DadaIsCrazy/usuba/tree/master/bench/scheduling-bs
https://github.com/DadaIsCrazy/usuba/tree/master/experimentations/spilling-bs
https://github.com/DadaIsCrazy/usuba/tree/master/experimentations/spilling-bs
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Figure 4.4: Spilling in Usuba-generated bitsliced ciphers, without scheduling
(compiled with Clang 7.0.0)

Optimizing the automatic bitslicing While the initial S-box contained fewer than 10
variables simultaneously alive, the bitsliced S-box contains 32 times more variables alive
at any point. A first optimization to reduce register pressure thus happens during auto-
matic bitslicing: Usubac detects nodes computing only bitwise instructions and calls to
nodes with the same property. These nodes are specialized to take b1 variables as input,
and their call sites are replaced with several calls instead of one. In the case of RECTAN-
GLE, the shorter S-box is thus called 32 times rather than calling the large S-box once. If
the initial pre-bitslicing S-box call was:

(x0, x1, x2, x3) = sbox(y0, y1, y2, y3)

with x0, x1, x2, x3, y0, y1, y2, y3 of type u32. Then, the naive bitsliced call
would remain the same except that variables would be typed b32, and sbox would be
the modified version that takes b32 as inputs and repeats each operation 32 times. The
optimized bitsliced version, however, is:

(x0[0], x1[0], x2[0], x3[0]) = sbox1(y0[0], y1[0], y2[0], y3[0]);
(x0[1], x1[1], x2[1], x3[1]) = sbox1(y0[1], y1[1], y2[1], y3[1]);
...
(x0[31], x1[31], x2[31], x3[31]) = sbox1(y0[31], y1[31], y2[31], y3[31]);

where sbox1 calls the initial sbox node specialized with input types b1.
Concretely, this optimization reduces register pressure at the expense of performing

more function calls. The improvements heavily depend on the ciphers and C compilers
used. On AVX, when using Clang, this optimization yields a 34% speedup on ASCON,
12% on GIFT and 6% on CLYDE.

The same optimization cannot be applied to linear layers, however, as they almost
always contain rotations, shifts or permutations, which manipulate large portions of the
cipher state. Consider, for instance, RECTANGLE’s linear layer:
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node ShiftRows (input:u16x4) returns (out:u16x4)
let

out[0] = input[0];
out[1] = input[1] <<< 1;
out[2] = input[2] <<< 12;
out[3] = input[3] <<< 13
tel

Using a u1x4 input instead of a u16x4 is not possible due to the left rotations, which
requires all 16 bits of each input. Instead, this function will be bitsliced and become:

node ShiftRows (input:b1[4][16]) returns (out:b1[4][16])
let

out[0][0] = input[0][0]; // out[0] = input[0]
out[0][1] = input[0][1];
...
out[0][15] = input[0][15];
out[1][0] = input[1][1]; // out[1] = input[1] <<< 1
out[1][1] = input[1][2];
...
out[1][15] = input[1][0];
out[2][0] = input[2][12]; // out[2] = input[2] <<< 12
out[2][1] = input[2][13];
...
out[2][15] = input[2][11];
out[3][0] = input[3][13]; // out[3] = input[3] <<< 13
out[3][1] = input[3][14];
...
out[3][15] = input[3][12];

tel

In the case of RECTANGLE’s ShiftRows node, it can be inlined and entirely removed
using copy propagation since it only contains assignments. However, for some other
ciphers such as ASCON, SERPENT, CLYDE or SKINNY, the linear layers contains xors,
which cannot be optimized away. Similarly, the AddRoundKey step of most ciphers intro-
duces a large number of consecutive xors.

Overall, after bitslicing, the main function of Rectangle thus becomes:

state := AddRoundKey(state, key[0]); // <--- lots of spilling in this node
state[0..3] := Sbox(state[0..3]);
state[4..7] := Sbox(state[4..7]);
...
state[60..63] := Sbox(state[60..63]);
state := LinearLayer(state); // <--- lots of spilling in this node
state := AddRoundKey(state, key[1]); // <--- lots of spilling in this node
state[0..3] := Sbox(state[0..3]);
state[4..7] := Sbox(state[4..7]);
...
state[60..63] := Sbox(state[60..63]);
...

Bitslice code scheduling We designed a scheduling algorithm that aims at interleaving
the linear layers (and key additions) with S-box calls in order to reduce the live ranges of
some variables and thus reduce the need for spilling.

This algorithm requires a first inlining step that inlines linear nodes (that is, nodes
made of only linear operations: xors, assignments, and calls to other linear nodes). After
this inlining step, RECTANGLE’s code would thus be:
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state[0] := state[0] ˆ key[0][0]; // AddRoundKey 1
state[1] := state[1] ˆ key[0][1];
state[2] := state[2] ˆ key[0][2];
state[3] := state[3] ˆ key[0][3];
state[4] := state[4] ˆ key[0][4];
state[5] := state[5] ˆ key[0][5];
state[6] := state[6] ˆ key[0][6];
state[7] := state[7] ˆ key[0][7];
state[8] := state[8] ˆ key[0][8];
state[9] := state[9] ˆ key[0][9];
...
state[63] := state[63] ˆ key[0][63];
state[0..3] := Sbox(state[0..3]); // S-boxes 1
state[4..7] := Sbox(state[4..7]);
state[8..11] := Sbox(state[8..11]);
...
state[60..63] := Sbox(state[60..63]);
state[0] := state[0]; // Linear layer 1
state[1] := state[1];
state[2] := state[2];
state[3] := state[3];
state[4] := state[4];
state[5] := state[5];
state[6] := state[6];
...
state[63] := state[60];
state[0] := state[0] ˆ key[1][0]; // AddRoundKey 2
state[1] := state[1] ˆ key[1][1];
state[2] := state[2] ˆ key[1][2];
state[3] := state[3] ˆ key[1][3];
state[4] := state[4] ˆ key[1][4];
state[5] := state[5] ˆ key[1][5];
...
state[63] := state[63] ˆ key[1][63];
state[0..3] := Sbox(state[0..3]); // S-boxes 2
state[4..7] := Sbox(state[4..7]);
...

The inlined linear and key addition introduce a lot of spilling since they use a lot of
variables a single time. After our scheduling algorithm, RECTANGLE’s code will be:

state[0] := state[0] ˆ key[0][0]; // Part of AddRoundKey 1
state[1] := state[1] ˆ key[0][1];
state[2] := state[2] ˆ key[0][2];
state[3] := state[3] ˆ key[0][3];
state[0..3] := Sbox(state[0..3]); // S-box 1
state[4] := state[4] ˆ key[0][4]; // Part of AddRoundKey 1
state[5] := state[5] ˆ key[0][5];
state[6] := state[6] ˆ key[0][6];
state[7] := state[7] ˆ key[0][7];
state[4..7] := Sbox(state[4..7]); // S-box 1
...
...
state[0] := state[0]; // Part of Linear layer 1
state[1] := state[1];
state[2] := state[2];
state[3] := state[3];
state[0] := state[0] ˆ key[1][0]; // Part of AddRoundKey 2
state[1] := state[1] ˆ key[1][1];
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state[2] := state[2] ˆ key[1][2];
state[3] := state[3] ˆ key[1][3];
state[0..3] := Sbox(state[0..3]); // S-box 2
state[4] := state[4]; // Part of Linear layer 1
state[5] := state[5];
state[6] := state[6];
state[7] := state[7];
state[4] := state[4] ˆ key[1][4]; // Part of AddRoundKey 2
state[5] := state[5] ˆ key[1][5];
state[6] := state[6] ˆ key[1][6];
state[7] := state[7] ˆ key[1][7];
state[4..7] := Sbox(state[0..3]); // S-box 2
...
...

Our scheduling algorithm (Algorithm 1) aims at reducing the lifespan of variables
computed in the linear layers by interleaving linear layer with S-boxes calls: the param-
eters of the S-boxes are computed as late as possible, thus removing the need to spill
them.

Algorithm 1 Bitsliced code scheduling algorithm

1: procedure SCHEDULE(prog)
2: for each function call funCall of prog do
3: for each variable v in funCall’s arguments do
4: if v’s definition is not scheduled yet then
5: schedule v’s definition (and dependencies) next
6: schedule funCall next

The optimization of automatic bitslicing is crucial for this scheduling algorithm to
work: without it, the S-box is a single large function rather than several calls to small
S-boxes, and no interleaving can happen. Similarly, the inlining pass that happens before
scheduling itself is essential to ensure that the instructions of the linear layer are inlined
and ready to be interleaved with calls to the S-boxes.

Performance We evaluated this algorithm on 11 ciphers containing a distinct S-box and
linear layer, where the S-box only performs bitwise instructions. We compiled the gener-
ated C code with GCC 8.3.0 and Clang 7.0.0, and ran the benchmarks on a Intel i5 6500.
The results are shown in Figure 4.5.

Our scheduling algorithm is clearly beneficial, yielding speedups of up to ×1.35.
Some ciphers (e.g., ACE, GIMLI, SPONGENT, SUBTERRANEAN, XOODOO) do not have
a clearly distinct S-box and linear layer, and we thus do not evaluate our scheduling al-
gorithm on them. In practice, Usubac will try to apply the scheduling algorithm, leaving
the autotuner to judge whether the resulting code is more or less efficient.

The exact benefits of this scheduling algorithm significantly vary from one cipher to
the other, from one architecture to the other, and from one compiler to the other. For in-
stance, while on general purpose register our algorithm improves AES’s performance by
a factor 1.04, it actually reduces it by 0.99 on AVX2 registers. On PRESENT, our algorithm
is clearly more efficient on general-purpose registers, while on PYJAMASK, it is clearly
better on AVX2 registers.
There does not seem to be a single root cause explaining the performance improvement
or degradation observed in our benchmarks. Once again, we rely on the autotuner to
make the final decision.



4.2. BACKEND 107

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

AES Ascon Clyde DES Gift Photon Present Pyjamask Rectangle Serpent Skinny

B
it

sl
ic

e 
sc

h
ed

u
lin

g 
sp

ee
d

u
p

Clang -O3 x86 Clang -O3 AVX2 GCC -O3 x86 GCC -O3 AVX2

GCC -Os x86 GCC -Os AVX2 baseline

Figure 4.5: Performance of the bitsliced code scheduling algorithm
(raw numbers in Table A.4, Page 196)

mslice Scheduler

! The benchmarks of this section are available at:
https://github.com/DadaIsCrazy/usuba/tree/master/bench/scheduling

msliced programs have much lower register pressure than bitsliced programs. When
targeting deeply-pipelined superscalar architectures (like high-end Intel CPUs), spilling
is less of an issue, the latency of the few resulting load and store operations being hidden
by the CPU out-of-order execution pipeline. Instead, the challenge consists in being able
to saturate the CPU execution units. To do so, one must increase instruction-level par-
allelism (ILP), taking into account data hazards. Consider, for instance, CLYDE’s linear
layer:

node lbox(x,y:u32) returns (xr,yr:u32)
vars

a, b, c, d: u32
let

a = x ˆ (x >>> 12);
b = y ˆ (y >>> 12);
a := a ˆ (a >>> 3);
b := b ˆ (b >>> 3);
a := a ˆ (x >>> 17);
b := b ˆ (y >>> 17);
c = a ˆ (a >>> 31);
d = b ˆ (b >>> 31);
a := a ˆ (d >>> 26);
b := b ˆ (c >>> 25);
a := a ˆ (c >>> 15);
b := b ˆ (d >>> 15);
(xr, yr) = (a,b)

tel

https://github.com/DadaIsCrazy/usuba/tree/master/bench/scheduling
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Only 2 instructions per cycles can ever be computed because of data dependencies:
x >>> 12 and y >>> 12 during the first cycle, then x ˆ (x >>> 12) and y ˆ (y >>> 12)

in the second cycle, a >>> 3 and b >>> 3 in the third one, etc.However, after inlining,
it may be possible to partially interleave this function with other parts of the cipher (for
instance the S-box or the key addition).

One may hope for the out-of-order nature of modern CPU to alleviate this issue, al-
lowing the processor to execute independent instructions ahead in the execution streams.
However, due to the bulky nature of sliced code, we empirically observe that the reserva-
tion station is quickly saturated, preventing actual out-of-order execution. Unfortunately,
C compilers have their own heuristic to schedule the instructions, and they often fail to
generate code that is optimal with regard to data hazards.

Algorithm 2 mslice code scheduling algorithm
1: procedure SCHEDULE(node)
2: lb window = make fifo(size = 10)
3: remaining = node.equations
4: scheduled = empty list
5: while remaining is not empty do
6: found = false
7: for each equation eqn of remaining do
8: if eqn has no dependency with any equation of lb window then
9: add eqn to scheduled

10: add eqn to lb window
11: remove eqn from remaining
12: found = true
13: break
14: if found == false then remove the oldest instruction from lb window
15: return scheduled

Our mslice scheduling algorithm (Algorithm 2) statically increases ILP by maintain-
ing a look-behind window of the previous 10 instructions. To schedule an instruction,
we pick one with no data hazard with the instructions in the look-behind window. If
no such instruction can be found, we reduce the size of the look-behind window, and,
ultimately just schedule any instruction that is ready. While C compilers may undo this
optimization when they perform their own scheduling, we observe significant perfor-
mance improvements by explicitly performing this first scheduling pass ourselves, as
shown in Figure 4.6.

This algorithm is particularly useful with ciphers that involve functions with heavy
data dependencies. For instance, consider ACE’s f node:

node f(x:u32) returns (y:u32)
let

y = ((x <<< 5) & x) ˆ (x <<< 1)
tel

It contains only 4 instructions, but cannot execute in fewer than 3 cycles due to data
dependencies. However, looking at the bigger picture of ACE, this function is wrapped
inside the so-called Simeck-box:
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Figure 4.6: Performance of the msliced code scheduling algorithm
(raw numbers in Table A.2, Page 195)

node simeck_box(input:u32x2, rc:u32) returns (output:u32x2)
vars round:u32x2[9]
let

round[0] = input;
forall i in [0, 7] {

round[i+1] = ( f(round[i][0]) ˆ round[i][1] ˆ
0xfffffffe ˆ ((rc >> i) & 1),
round[i][0] ) ;

}
output = round[8]

tel

This function is also a bottleneck because of data dependencies, but it is actually called 3
times consecutively each round, with independent inputs:

node ACE_step(A,B,C,D,E:u32x2,RC,SC:u32[3]) returns (Ar,Br,Cr,Dr,Er:u32x2)
let

A := simeck_box(A,RC[0]);
C := simeck_box(C,RC[1]);
E := simeck_box(E,RC[2]);
...

After inlining and unrolling simeck_box, the effect of our scheduling algorithm will be
to interleave those 3 simeck_box, thus removing any pipeline stalls from data hazard.
Our mslice scheduling algorithm brings up the number of instructions executed per cycle
(IPC) from 1.93 to 2.67 on AVX2 registers, translating into a ×1.35 speedup.
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Similarly, CHACHA20’s round relies on the following node:

node QuarterRound (a, b, c, d : u32)
returns (aR, bR, cR, dR : u32)

let
a := a + b;
d := (d ˆ a) <<< 16;
c := c + d;
b := (b ˆ c) <<< 12;
aR = a + b;
dR = (d ˆ aR) <<< 8;
cR = c + dR;
bR = (b ˆ cR) <<< 7;

tel

This function, despite containing only 12 instructions, cannot be executed in fewer than
12 cycles: none of the instructions of this function can be computed in the same cycle,
since each of them has a dependency with the previous one. However, this function is
called consecutively 4 times on independent inputs:

node DoubleRound (state:u32x16) returns (stateR:u32x16)
let

state[0,4,8,12] := QR(state[0,4,8,12]);
state[1,5,9,13] := QR(state[1,5,9,13]);
state[2,6,10,14] := QR(state[2,6,10,14]);
state[3,7,11,15] := QR(state[3,7,11,15]);

Our scheduling algorithm is able to interleave each of those calls, allowing them to be
executed simultaneously, removing stalls from data dependencies. We observe that, on
general-purpose registers, using our scheduling algorithm increases the IPC of CHACHA20
from 2.79 up to 3.44, which translates into a ×1.05 speedup.

For other ciphers likes AES, ASCON and CLYDE, the speedup is lesser but still a sig-
nificant at ×1.04. AES’s ShiftRows contains 8 shuffle instructions and nothing else, and
thus cannot be executed in fewer than 8 cycles. This algorithm allows this function to
be run simultaneously with either the S-box (SubBytes) or the MixColumn step. Both
CLYDE’s and ASCON’s linear layer are bottlenecked by data dependencies. This algo-
rithm allows those linear layers to be interleaved with the S-boxes, reducing data haz-
ards.

Look-behind window size The look-behind window needs to be at least n − 1 on an
architecture that can execute n bitwise/arithmetic instructions per cycle. However, ex-
perimentally, increasing the size of the look-behind window beyond this number leads
to better performance.

To illustrate the impact of the look-behind window size, let us assume that we want
to run the C code below on a CPU that can compute two xors each cycle:

a1 = x1 ˆ x2;
a2 = x3 ˆ x4;
b1 = a1 ˆ x5;
b2 = a2 ˆ x6;
c1 = x7 ˆ x8;
c2 = c1 ˆ x9;

As is, this code would be executed in 4 cycles: during the first cycle, a1 and a2 would
be computed, and during the second cycle b1 and b2 would be computed. However, c2
depends on c1 and cannot be computed during the same cycle. Two cycles cycles would
thus be necessary to compute the last two instructions.
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If we were to reschedule this code using our algorithm with a look-behind window
of 1 instructions, the final scheduling would not change (assuming that ties are broken
using the initial order of the source, i.e., that when 2 instructions could be scheduled
without dependencies with the previous ones, the one that came first in the initial code
is selected). Using a look-behind window of 2 instructions, however, would produce the
following scheduling:

a1 = x1 ˆ x2;
a2 = x3 ˆ x4;
c1 = x7 ˆ x8;
b1 = a1 ˆ x5;
b2 = a2 ˆ x6;
c2 = c1 ˆ x9;

This code can now run in 3 cycles rather than 4. This illustrates why using a look-behind
window of 2 instructions for SSE/AVX architectures is not always optimal, despite the
fact that only 3 bitwise/arithmetic instructions can be executed per cycle. In practice,
the complexity of the algorithm depends on the size of the look-behind window, and
using arbitrarily large look-behind windows would be prohibitively expensive. Experi-
mentally, there is very little to gain by using more than 10 instructions in the look-behind
window, and this size allows the algorithm to still be sufficiently fast.

4.2.6 Interleaving

Scheduling is not always enough to remove all data hazards. For instance, consider
RECTANGLE (Figure 1.1, Page 19). Its S-box is bottlenecked by data dependencies, and its
linear layer only contains 3 instructions, which can be partially scheduled alongside the
S-box, but are not enough to saturate the CPU execution units.

Another optimization to maximize CPU usage (in terms of IPC) consists in interleav-
ing several executions of the program. Usuba allows us to systematize this folklore cryp-
tographer’s trick, popularized by Matsui [206]: for a cipher using a small number of
registers (for example, strictly below 8 general-purpose registers on Intel), we can in-
crease its ILP by interleaving several copies of a single cipher, each manipulating its own
independent set of variables.

This can be understood as a static form of hyper-threading, by which we (statically)
interleave the instruction stream of several parallel execution of a single cipher. By in-
creasing ILP, we reduce the impact of data hazards in the deeply pipelined CPU architec-
ture we are targeting. Note that this technique is orthogonal from slicing (which exploits
spatial parallelism, in the registers) by exploiting temporal parallelism, i.e., the fact that
a modern CPU can dispatch multiple, independent instructions to its parallel execution
units. This technique naturally fits within our programming model: we can implement
it by a straightforward Usuba0-to-Usuba0 translation.

Example

RECTANGLE’s S-box for instance can be written in C using the following macro:

#define sbox_circuit(a0,a1,a2,a3) { \
int t0, t1, t2; \
t0 = ˜a1; \
t1 = a2 ˆ a3; \
t2 = a3 | t0; \
t2 = a0 ˆ t2; \
a0 = a0 & t0; \
a0 = a0 ˆ t1; \
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t0 = a1 ˆ a2; \
a1 = a2 ˆ t2; \
a3 = t1 & t2; \
a3 = t0 ˆ a3; \
t0 = a0 | t0; \
a2 = t2 ˆ t0; \
}

This implementation modifies its input (a0, a1, a2 and a3) in-place, and uses 3 temporary
variables t0, t1 and t2. It contains 12 instructions, and we might therefore expect it to
execute in 3 cycles on a Skylake, saturating the 4 bitwise ports of this CPU. However,
it contains a lot of data dependencies: t2 = a3 | t0 needs to wait for t0 = ˜a1 to
be computed; t2 = a0 ˆ t2 needs to wait for t2 = a3 | t0; a0 = a0 ˆ t1 needs to
wait for a0 = a0 & t0, and so on. Compiled with Clang 7.0.0, this code executes in 5.24
cycles on average. By interleaving two instances of this code, the impact of data hazards
is reduced:

#define sbox_circuit_interleaved(a0,a1,a2,a3,a0_2,a1_2,a2_2,a3_2) { \
int t0, t1, t2; int t0_2, t1_2, t2_2; \
t0 = ˜a1; t0_2 = ˜a1_2; \
t1 = a2 ˆ a3; t1_2 = a2_2 ˆ a3_2; \
t2 = a3 | t0; t2_2 = a3_2 | t0_2; \
t2 = a0 ˆ t2; t2_2 = a0_2 ˆ t2_2; \
a0 = a0 & t0; a0_2 = a0_2 & t0_2; \
a0 = a0 ˆ t1; a0_2 = a0_2 ˆ t1_2; \
t0 = a1 ˆ a2; t0_2 = a1_2 ˆ a2_2; \
a1 = a2 ˆ t2; a1_2 = a2_2 ˆ t2_2; \
a3 = t1 & t2; a3_2 = t1_2 & t2_2; \
a3 = t0 ˆ a3; a3_2 = t0_2 ˆ a3_2; \
t0 = a0 | t0; t0_2 = a0_2 | t0_2; \
a2 = t2 ˆ t0; a2_2 = t2_2 ˆ t0_2; \

}

This code contains twice the S-box code (visually separated to make it clearer): one in-
stance computes the S-box on a0, a1, a2 and a3, while the other computes it on a second
input, a0_2, a1_2, a2_2 and a3_2. This code runs in 7 cycles; or 3.5 cycles per S-box,
which is much closer to the ideal 3 cycles/S-box. We say that this code is 2-interleaved.

Despite interleaving, some data dependencies remain, and it may be tempting to in-
terleave a third execution of the S-box. However, since each S-box requires 7 registers (4
for the input, and 3 temporaries), this would require 21 registers, and only 16 general-
purpose registers are available on Intel. Still, we benchmarked this 3-interleaved S-box,
and it executes 12.92 cycles, or 4.3 cycles/S-box; which is slower than the 2-interleaved
one, but still faster than without interleaving at all. Inspecting the assembly code reveals
that in the 3-interleaved S-box, 4 values are spilled, thus requiring 8 additional move
operations (4 stores and 4 loads). The 2-interleaved S-box does not contain any spilling.

Remark. In order to benchmark the S-box, we put it in a loop that we unrolled 10 times
(using Clang’s unroll pragma). This unrolling is required because of the expected port
saturation: if the S-box without interleaving were to use ports 0, 1, 5 and 6 of the CPU
for 3 cycles, this would leave no free port to perform the jump at the end of the loop.
In practice, since the non-interleaved S-box does not saturate the ports, this does not
impact execution time. However, unrolling improves performance of the 2-interleaved
S-box—which puts more pressure on the execution ports—by 14%.
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Cipher
Instruction per cycle

Speedup
without interleaving with 2-interleaving

XOODOO 3.45 3.47 0.81
PYJAMASK 3.45 3.26 0.93
GIMLI 3.33 3.11 0.83
GIFT 3.31 3.36 0.96
CLYDE 2.96 3.67 1.24
CHACHA20 2.85 2.92 1.00
RECTANGLE 2.79 3.49 1.19
ASCON 2.73 3.33 1.22
SERPENT 2.32 3.39 1.40
ACE 2.20 2.75 1.22

Table 4.1: Impact of interleaving on some ciphers

Initial Benchmark

!
The benchmarks of this section are available at:
https://github.com/DadaIsCrazy/usuba/tree/master/bench/
interleaving

To benchmark our interleaving optimization, we considered 10 ciphers with low reg-
ister pressure, making them good candidates for interleaving. We started by generating
non-interleaved and 2-interleaved implementations on general-purpose registers for In-
tel. We compiled the generated code with Clang 7.0.0. The results are reported in Ta-
ble 4.1 (sorted by IPC without interleaving). Interleaving is more beneficial on ciphers
with low IPC. In all cases, the reason for the low IPC is data hazards. The 2-interleaved
implementations reduce the impact of those data hazards, and bring the IPC up, im-
proving throughput. We will examine each case one by one in the next section. One
exception is CHACHA20, which, despite its low IPC, does not benefit from interleaving.
CHACHA20, as shown in Section 4.2.5 (Page 107), is bottlenecked by data dependencies,
and two interleaved instances are not enough to alleviate this bottleneck.

Factor and Granularity

!
The benchmarks of this section are available at:
https://github.com/DadaIsCrazy/usuba/tree/master/bench/
interleaving-params

We showed that interleaving can increase throughput of ciphers suffering from tight
dependencies. Our interleaving algorithm is parameterized by a factor and a granular-
ity. The factor determines the number of implementations to be interleaved, while the
granularity describes how the implementations are interleaved: 1 instruction from an
implementation followed by 1 from another one would be a granularity of 1, while 5
instructions from an implementation followed by 5 from another one would be a granu-
larity of 5. For instance, the RECTANGLE 2-interleaved S-box above has a factor of 2 and
a granularity of 1 since instructions from the first and the second S-box are interleaved
one by one. A granularity of 4 would correspond to the following code:

https://github.com/DadaIsCrazy/usuba/tree/master/bench/interleaving
https://github.com/DadaIsCrazy/usuba/tree/master/bench/interleaving
https://github.com/DadaIsCrazy/usuba/tree/master/bench/interleaving-params
https://github.com/DadaIsCrazy/usuba/tree/master/bench/interleaving-params
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t0 = ˜a1; \
t1 = a2 ˆ a3; \
t2 = a3 | t0; \
t2 = a0 ˆ t2; \

t0_2 = ˜a1_2; \
t1_2 = a2_2 ˆ a3_2; \
t2_2 = a3_2 | t0_2; \
t2_2 = a0_2 ˆ t2_2; \

a0 = a0 & t0; \
a0 = a0 ˆ t1; \
t0 = a1 ˆ a2; \
a1 = a2 ˆ t2; \

a0_2 = a0_2 & t0_2; \
a0_2 = a0_2 ˆ t1_2; \
t0_2 = a1_2 ˆ a2_2; \
a1_2 = a2_2 ˆ t2_2;

The user can use the flags -interleaving-factor <n> and -interleaving-granularity
<n> to instruct Usubac to generate a code using a given interleaving factor and granu-
larity.

The granularity is only up to a function call or loop, since we do not duplicate func-
tion calls but rather the arguments in a function call. The rationale being that interleav-
ing is supposed to reduce pipeline stalls within functions (resp., loops), and duplicating
function calls (resp., loops) would fail to achieve this. For instance, the following Usuba
code (extracted from our CHACHA20 implementation):

state[0,4,8,12] := QR(state[0,4,8,12]);
state[1,5,9,13] := QR(state[1,5,9,13]);
state[2,6,10,14] := QR(state[2,6,10,14]);

is 2-interleaved as (with QR’s definition being modified accordingly):

(state[0,4,8,12],state_2[0,4,8,12]) :=
QR_x2(state[0,4,8,12],state_2[0,4,8,12]);

(state[1,5,9,13],state_2[1,5,9,13]) :=
QR_x2(state[1,5,9,13],state_2[1,5,9,13]);

(state[2,6,10,14],state_2[2,6,10,14]) :=
QR_x2(state[2,6,10,14],state_2[2,6,10,14]);

rather than:

state[0,4,8,12] := QR(state[0,4,8,12]);
state_2[0,4,8,12] := QR(state_2[0,4,8,12]);
state[1,5,9,13] := QR(state[1,5,9,13]);
state_2[0,4,8,12] := QR(state_2[0,4,8,12]);
state[2,6,10,14] := QR(state[2,6,10,14]);
state_2[0,4,8,12] := QR(state_2[0,4,8,12]);

Note that interleaving is done after inlining and unrolling in the pipeline, which
means that any node call still present in the Usuba0 code will not be inlined.

To evaluate how factor and granularity impact throughput, we generated implemen-
tations of 10 ciphers with different factors (0 (without interleaving), 2, 3, 4 and 5), and
different granularities (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 30, 50, 100, 200). We used
Usubac’s -unroll and -inline-all flags to fully unroll and inline the code in order
to eliminate the impact of loops and function calls from our experiment. Overall, we
generated 19.5 millions of lines of C code in 700 files for this benchmark.

We benchmarked our interleaved implementations on general-purpose registers rather
than SIMD, and verified that the frontend was not a bottleneck. Since most programs
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(e.g., HPC applications) on SIMD are made of loops and function calls, decoded instruc-
tions are stored in the µop cache (DSB). However, since we fully inlined and unrolled
the code, the legacy pipeline (MITE) is used to decode the instructions, and can only
process up to 16 bytes of instruction per cycle. SIMD assembly instructions are larger
than general-purpose ones: an AVX instruction can easily take 7 bytes (e.g., an addition
where one of the operand is a memory address), and 16 bytes often correspond to only
2 instructions; not enough to fill the pipeline. By using general-purpose registers rather
than SIMD registers, we remove the risk of underutilizing the DSB in our benchmark.

We report the results in the form of graphs showing the throughput (in cycles per
bytes; lower is better) of each cipher depending on the interleaving granularity for each
interleaving factor.

Remark. When benchmarking interleaving on general-purpose registers, we were care-
ful to disable Clang’s auto-vectorization (using -fno-slp-vectorize -fno-vectorize).
Failing to do so produces inconsistent results since Clang erratically and partially vector-
izes some implementations and not others. Furthermore, we would not be benchmark-
ing general-purpose registers anymore since the vectorized code would use SSE or AVX
registers.

RECTANGLE (Figure 4.7a)

RECTANGLE’s S-box contains 12 instructions, and could be executed in 4 cycles if it
were not slowed down by data dependencies: its run time is actually 5.24 cycles on
average. Interleaving 2 (resp., 3) times RECTANGLE yields a speedup of ×1.26 (resp.,
×1.13), regardless of the granularity. The number of loads and stores in the 2-interleaved
RECTANGLE implementation is exactly twice the number of loads and stores in the non-
interleaved implementation: interleaving introduced no spilling at all. On the other
hand, the 3-interleaved implementation suffers from spilling and thus contains 4 times
more memory operations than the non-interleaved one, which results in a slower through-
put than the 2-interleaved version.

Interleaving 4 or 5 instances with a small granularity (less than 10) introduces too
much spilling, which reduces throughput. Increasing granularity reduces spilling while
still allowing the C compiler to schedule the instructions in a way to reduce the impact of
data hazards. For instance, 5-interleaved RECTANGLE with a granularity of 50 contains
twice fewer memory loads and stores than with a granularity of 2: temporary variables
from all 5 implementations tend not to be alive at the same time when the granularity is
large enough, while they are when the granularity is small.

ACE (Figure 4.7b)

One of ACE’s basic block is a function that computes ((x <<< 5) & x) ˆ (x <<< 1).
It contains 4 instructions, and yet cannot be executed in fewer than 3 cycles, because of its
inner dependencies. Interleaving this function twice means that it contains 8 instructions
that cannot execute in fewer than 3 cycles, still wasting CPU resources. Interleaving it 3
times or more allows it to fully saturate its ports (i.e., run its 12 instructions in 3 cycles),
and it is indeed faster than the 2-interleaved implementation despite containing more
spilling, and is 1.5 times faster than the non-interleaved implementation.

The 3-interleaved code contains already 9 times more memory operations (i.e., reads
and stores) than the non-interleaved implementation, as a direct cause of additional
spilling. The increase in ILP that the 3-interleaved code brings is, however, more than
enough to compensate for this additional spilling. The 5-interleaved code only contains
twice more memory operations than the 3-interleaved one, showing that this additional
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Figure 4.7: Impact of interleaving on general-purpose registers
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interleaving caused little extra spilling, which explains why it exhibits a similar through-
put as the 3-interleaved code.

ACE also contains other idioms that can limit CPU utilization, such as 0xfffffffe
ˆ ((rc >> i) & 1), which cannot execute in fewer than 3 cycles despite containing
only 3 instructions. These idioms benefit from interleaving as well.

In all cases, the granularity has a low impact. The reordering done by Clang, as well
as the out-of-order nature of the CPU are able to schedule the instructions in a way to
reduce the impact of data hazards. Interestingly, when the granularity is larger than 50
instructions, the speed of the 3, 4 and 5-interleaved code falls down, as a result of Clang
not being able to properly schedule ACE’s instructions.

ASCON (Figure 4.7c)

ASCON’s S-box contains 22 instructions with few enough data dependencies to allow it
to run in about 6 cycles, which is very close to saturate the CPU. Its linear layer, however,
is the following:

node LinearLayer(state:u64x5) returns (stateR:u64x5)
let

stateR[0] = state[0] ˆ (state[0] >>> 19) ˆ (state[0] >>> 28);
stateR[1] = state[1] ˆ (state[1] >>> 61) ˆ (state[1] >>> 39);
stateR[2] = state[2] ˆ (state[2] >>> 1) ˆ (state[2] >>> 6);
stateR[3] = state[3] ˆ (state[3] >>> 10) ˆ (state[3] >>> 17);
stateR[4] = state[4] ˆ (state[4] >>> 7) ˆ (state[4] >>> 41);

tel

This linear layer is not bottlenecked by data dependencies but on rotations: general-
purpose rotations can only be executed on ports 0 and 6. Only two rotations can be
executed each cycle, and this code can therefore not be executed in fewer than 7 cy-
cles: 5 cycles for all the rotations, followed by two additional cycles to finish computing
stateR[4] from the result of the rotations, each computing a single xor.

There are two ways that ASCON can benefit from interleaving. First, if the linear layer
is executed two (resp., three) times simultaneously, the last 2 extra cycles computing a
single xor now compute two (resp., three) xors each, thus saving one (resp., two) cycle.
Second, out-of-order execution can allow the S-box of one instance of ASCON to execute
while the linear layer of the other instance runs, thus allowing a full saturation of the
CPU despite the rotations being only able to use ports 0 and 6.

Table 4.2 shows the IPC, number of memory operations (loads/stores), and number
of cycles when 1, 2, 3, or 4 instructions are executed on several interleaved version of
ASCON (with a granularity of 10). The non-interleaved code has a fairly low IPC of
2.68, and uses fewer than 3 ports on half the cycles. Interleaving twice ASCON increases
the IPC to 3.31, and doubles the number of memory operations which indicates that
no spilling has been introduced. However, only 72% of the cycles execute 3 µops or
more, which still shows an underutilization of the CPU. 3-interleaved ASCON suffers
from a lot more spilling: it contains about 10 times more memory operations than without
interleaving. However, it also brings the IPC up to 3.80, and uses 3 ports or more on 91%
of the cycles. This translates into a 2.5% performance improvement over the 2-interleaved
implementation at small granularities.

However, interleaving a fourth or a fifth instance of ASCON does not increase through-
put further, which is not surprising since 3-interleaved ASCON already almost saturates
the CPU ports.
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Factor
Cycles/
Bytes

IPC
#Memory ops
(normalized)

% of cycles when
at least n µopt
are executed

1 2 3 4
0 4.89 2.68 1 97.5 90.0 49.2 14.4

x2 3.91 3.31 1.98 98.9 98.9 72.7 36.1
x3 3.77 3.79 10.76 97.5 96.3 88.2 63.3
x4 4.22 3.79 23.23 99.8 97.8 90.6 64.3
x5 4.45 3.74 34.48 99.0 97.1 88.5 64.9

Table 4.2: Impact of interleaving on ASCON

Factor Cycles/Bytes IPC
#Memory ops
(normalized)

0 16.11 2.95 1
x2 13.23 3.68 2.66
x3 14.07 3.43 4.39
x4 14.59 3.30 5.79
x5 15.07 3.21 6.84

Table 4.3: Impact of interleaving on CLYDE

CLYDE (Figure 4.7d)

CLYDE’s linear layer consists in two calls to the following Usuba node:

node lbox(x,y:u32) returns (xr,yr:u32)
vars

a, b, c, d: u32
let

a = x ˆ (x >>> 12);
b = y ˆ (y >>> 12);
a := a ˆ (a >>> 3);
b := b ˆ (b >>> 3);
a := a ˆ (x >>> 17);
b := b ˆ (y >>> 17);
c = a ˆ (a >>> 31);
d = b ˆ (b >>> 31);
a := a ˆ (d >>> 26);
b := b ˆ (c >>> 25);
a := a ˆ (c >>> 15);
b := b ˆ (d >>> 15);
(xr, yr) = (a,b)

tel

We already showed in Section 4.2.5 (Page 107) that this node bottlenecks CLYDE due
to its inner data dependencies. Scheduling was able to alleviate the impact of those data
hazards by scheduling the two calls to this node simultaneously. Similarly, interleaving
two instances of CLYDE removes data hazards, thus improving throughput by 18%.

Table 4.3 the IPC and number of memory operations of CLYDE depending of the in-
terleaving factor. The higher the interleaving factor, the more spilling an implementation
contains. Furthermore, 2-interleaving is already enough to bring the IPC up to 3.68. As a
result, interleaving beyond a factor of 2 reduces throughput.
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Figure 4.8: Impact of interleaving on Serpent

SERPENT (Figure 4.8a)

SERPENT only uses 5 registers once compiled to assembly (4 for the state and 1 temporary
register used in the S-box). Its linear layer contains 28 xors and shifts, yet executes in 14
cycles due to data dependencies. Likewise, the S-boxes were optimized by Osvik [234]
to put a very low pressure on the registers, and to exploit a superscalar CPU that is able
to execute only two bitwise instructions per cycle (whereas modern Intel CPUs can do 3
or 4 bitwise instructions per cycles). For instance, the first S-box contains 17 instructions,
but executes in 8 cycles. This choice made sense back when there were only 8 general-
purpose registers available, among which one was reserved for the stack pointer, and
one was used to keep a pointer to the key, leaving only 6 registers available.

Now that we have 16 registers available, interleaving several implementations of
SERPENT makes sense and does greatly improve throughput as can be seen from Fig-
ure 4.8a. Once again, interleaving more than two instances introduces spilling, and does
not improve throughput.

On AVX, however, all 16 registers are available for use: the stack pointer and the
pointer to the key are kept in general-purpose registers rather than AVX ones. 3-interleaving
therefore introduces less spilling than on GP registers, making it 1.05 times faster than
2-interleaving, as shown in Figure 4.8b.

The current best AVX2 implementation of Serpent is—to the best of our knowledge—
the one used in the Linux kernel, written by Kivilinna [183], which uses 2-interleaving.
Kivilinna mentions that he experimentally came to the conclusion that interleaving at a
granularity of 8 is optimal for the S-boxes and that 10 or 11 is optimal for the linear layer.
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Using Usuba, we are able to systematize this experimental approach and we observe
that, with Clang, granularity has a very low impact on throughput, and a factor of 3 is
optimal.

Other Ciphers (Figure 4.9)

On the other ciphers we benchmarked (CHACHA20, GIFT, GIMLI, PYJAMASK and XOODOO),
interleaving made throughput worse, from a couple of percents (e.g., 2-interleaving on
CHACHA20) up to 50% (e.g., 5-interleaving on XOODOO). As shown in Table 4.1, all of
those ciphers have very high IPC, above 3.3. None of those cipher is bottlenecked by data
dependencies (except for CHACHA20, which also has a high register pressure), and the
main impact of interleaving is to introduce spilling.

Overall Impact of Factor and Granularity

All of the examples we considered show that choosing a coarse granularity (50 instruc-
tions or more) reduces the impact of interleaving, regardless of whether it was positive or
negative. Most of the time, the granularity has little to no impact on throughput, as long
as it is below 20. There are a few exceptions, which can be attributed to either compiler
or CPU effects, and can be witnessed on SERPENT (Figure 4.8), RECTANGLE (Figure 4.7a),
and ACE (Figure 4.7b). For instance, on RECTANGLE 5-interleaved, granularities of 6 and
8 are 1.45 times better than granularities of 3 and 4 and 1.33 times better than granular-
ities of 7 and 9. When monitoring the programs, we observe that implementations with
a granularity of 7 and 9 do 3 times more memory accesses than the ones with a granu-
larity of 6 and 8, thus showing that our optimizations always risk to be nullified by poor
choices from the C compiler’s heuristics.

Determining the ideal interleaving factor for a given cipher is a complex task because
it depends both on register pressure and data dependencies. In some cases, like SERPENT,
introducing some spilling in order to reduce the amount of data hazards is worth it, while
in other cases, like RECTANGLE, spilling deteriorates throughput. Furthermore, while
we can compute the maximum number of live variables in an Usuba0 program, the C
compiler is free to schedule the generated C code how it sees fit, potentially reducing or
increasing the number of live variables.

Fortunately, Usubac’s autotuner fully automates the interleaving transformation, thus
relieving programmers from the burden of determining by hand the optimal interleaving
parameters. When compiling with the autotuner enabled, Usubac automatically bench-
marks several interleaving factors (0, 2 and 3) in order to find out which is best.

The autotuner does not benchmark the granularity when selecting the ideal interleav-
ing setup, since its impact on throughput is minimal. Furthermore, our mslice scheduling
algorithm (Section 4.2.5, Page 4.2.5) strives to minimize the impact of data dependencies
and thus reduces even further the influence of granularity.

4.2.7 Code Generation

Compiling Usuba0 to C is straightforward, as shown in Section 3.6.3. Nodes are trans-
lated to function definitions, and node calls to function calls. All expressions in Usuba0
have a natural equivalent in C, with the exception of Usuba’s shuffle, bitmask and
pack operators, whose compilation has already been discussed in Section 2.3.

The generated C code relies on macros rather than inline operators. For instance,
compiling the following Usuba0 nodes to C:
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Figure 4.9: Impact of interleaving on general-purpose registers
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node sbox (i0:u32, i1:u32)
returns (r0:u32, r1:u32)

vars t1 : u32
let

t1 = ˜i0;
r0 = t1 & i1;
r1 = t1 | i1;

tel

produces

void sbox__ (/*inputs*/ DATATYPE i0__,DATATYPE i1__,
/*outputs*/ DATATYPE* r0__,DATATYPE* r1__) {

// Variables declaration
DATATYPE t1__;

// Instructions (body)
t1__ = NOT(i0__);

*r0__ = AND(t1__,i1__);

*r1__ = OR(t1__,i1__);
}

Where DATATYPE is unsigned int on 32-bit registers, __m128i on SSE, __m256i on
AVX2, etc., and NOT, AND and OR are defined to use the architecture’s instructions. Using
macros allows us to change the architecture of the generated code by simply changing a
header. The new header must provide the same instructions, which means that, for in-
stance, a code compiled for AVX2 and using shuffles cannot be run on general-purpose
registers by simply changing the header since no shuffle would be available.

Usubac performs no architecture-specific optimizations, beyond its scheduling and
interleaving, which target superscalar architectures. Put otherwise, we do not compile
any differently a code for SSE or AVX2, except that Usubac’s autotuner may select dif-
ferent optimizations for each architecture. For general-purpose registers, SSE, AVX and
AVX2, the instructions used for cryptographic primitives are fairly similar, and we felt
that there was no need to optimize differently on each architecture. In most cases where
architecture-specific instructions can be used to speed up computation, Clang and GCC
are able to detect it and perform the optimization for us.

The AVX512 instruction set is, however, much richer, and opens the door for more
optimizations. For instance, it offers the vpternlogd instruction, which can compute
any Boolean function with 3 inputs. It can be useful, in particular, to speed up S-boxes.
For instance,

t1 = a ˆ b;
t2 = t1 & c;

can be written with a single vpternlog as

t2 = _mm512_ternarylogic_epi64(a,b,c,0b00010100);

Thus requiring one instruction rather than two. ICC is able to automatically perform
this optimization in some cases, but Clang and GCC are not. We leave it to future work
to evaluate whether Usubac could produce more optimized code by performing such
optimizations.
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4.3 Conclusion

We showed in this chapter how Usubac compiles Usuba programs down to C. The fron-
tend first normalizes (and monomorphizes) Usuba down to Usuba0, a monomorphic
low-level subset of Usuba that can be straightforwardly compiled to C. The backend ap-
plies several optimizations on the Usuba0 representation before generating C code.
We demonstrated that C compilers are unable to properly optimize the sliced crypto-
graphic code generated by Usubac. To overcome this limitation of C compilers, we
implemented several domain-specific optimizations ourselves (e.g., scheduling and in-
terleaving) to produce efficient code.

4.3.1 Related Work

Fisher and Dietz [137] and Ren [258] proposed architecture-agnostic languages and com-
pilers to enable high-level generic SIMD programming. By programming within these
languages, programmers do not need to worry about the availability of particular SIMD
instructions on target architectures: when an instruction is not realized in hardware, the
compiler provides “emulation code”. Our use-case takes us to the opposite direction: it
forbids us from turning to emulation since our interest is precisely to expose as much of
the (relevant) details of the target SIMD architecture to the programmer.

Clang, GCC and ICC all have passes to automatically (and heuristically) vectorize
loops. They also provide pragma annotations that can be used to manually drive the
heuristics to vectorize specific loops. OpenMP [232], initially designed to provide ab-
stractions for thread-oriented parallelization, now (since version 4.0) provides a #pragma
omp simd directive to instruct the compiler to vectorize a specific loop. The C++-based
language Cilk Plus [266] offers a #pragma simd directive that behaves similarly.

Several projects have also been developed to give programmers a more explicit con-
trol over vectorization. Cebrian et al. [101] for instance developed a set of generic macros
to replace SIMD-specific instructions, similar to Usuba’s operators. Several C++ libraries,
such as Vc [190] or Boost.SIMD [134], provide type abstractions and overloaded opera-
tors to manipulate generic vectors, which are then compiled down to SIMD instructions.

ispc [242] ports the concept of Single Program Multiple Data (SPMD)—traditionally
describing multithreaded code—to SIMD. The ispc language provides C-like syntax and
constructions, and let the programmer write a scalar program which is automatically vec-
torized in its entirety (as opposed to partially vectorized) by the compiler. Usuba takes
a similar stance: to take full advantage of hardware-level parallelism, we must be able
to describe the parallelism of our programs. However, our scope is much narrower: we
are concerned with high-throughput realization of straight-line, bit-twiddling programs
whose functional and observational correctness is of paramount importance. This rules
out the use of a variant of C or C++ as a source language.





Chapter 5

Performance Evaluation

Publication

This work was done in collaboration with Pierre-Évariste Dagand (LIP6). It led to
the following publication:

D. Mercadier and P. Dagand. Usuba: high-throughput and constant-time ciphers,
by construction. In K. S. McKinley and K. Fisher, editors, Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 157–173. ACM, 2019. doi:
10.1145/3314221.3314636

Usuba has two targets: high-end CPUs (e.g., Intel), for which speed is the main con-
cern, and low-end embedded devices (e.g., ARM), for side-channel resistance is the main
concern. In this chapter, we evaluate the throughput of ciphers written in Usuba on
Intel CPUs. First, we demonstrate that our implementations perform on par with refer-
ence, hand-tuned implementations (Section 5.1): the high-level features of Usuba do not
prevent us from generating efficient C code. We then analyze the scaling of our imple-
mentations on Intel SIMD extensions (SSE, AVX, AVX2, AVX512), showing that Usuba is
able to fully exploit these extensions (Section 5.2). Finally, we illustrate the throughput
differences between bitslicing, vslicing and hslicing on RECTANGLE, and show that no
slicing mode is strictly better than the others, thus illustrating the benefits of Usuba’s
polymorphism, as it allows to easily switch between slicing modes (Section 5.3).

5.1 Usuba vs. Reference Implementations

!
The benchmarks of this section are available at:
https://github.com/DadaIsCrazy/usuba/tree/master/bench/
ua-vs-human

In the following, we benchmark our Usuba implementations against hand-written
C or assembly implementations. When possible, we benchmark only the cryptographic
primitive, ignoring key schedule, transposition, and mode of operation. To do so, we
selected open-source, reference implementations that were self-identified as optimized
for high-end CPUs. The ciphers we considered are DES, AES (Figure 2.5, Page 61),
CHACHA20 (Figure 2.10, Page 66), SERPENT (Figure 2.11, Page 67), RECTANGLE (Fig-

125

https://github.com/DadaIsCrazy/usuba/tree/master/bench/ua-vs-human
https://github.com/DadaIsCrazy/usuba/tree/master/bench/ua-vs-human


126 CHAPTER 5. PERFORMANCE EVALUATION

ure 1.1, Page 19), GIMLI, ASCON (Figure 2.7, Page 63), ACE (Figure 2.9, Page 65) and
CLYDE. We also evaluate the throughput of Usuba on PYJAMASK, XOODOO and GIFT,
although we did not find reference implementations optimized for high-end CPUs for
these ciphers.

Several reference implementations (AES, CHACHA20, SERPENT) are written in assem-
bly, without a clear separation between the primitive and the mode of operations, and
only provide an API to encrypt bytes in CTR mode. To compare ourselves with those im-
plementations, we implemented the same mode of operation in C, following their code
as closely as possible. This puts us at a slight disadvantage, because assembly imple-
mentations tend to fuse the cryptographic runtime (i.e., mode and transposition) into the
primitive, thus enabling further optimizations. We used the Supercop [65] framework to
benchmark these implementations (since the references were already designed to inter-
face with it), and the performance we report below includes key schedule, transposition
(when a transposition is needed) and management of the counter (following the CTR
mode of operation).

For implementations that were not designed to interface with Supercop (DES, RECT-
ANGLE, GIMLI, ASCON, ACE, CLYDE), we wrote our own benchmarking code as de-
scribed in Section 1.2.1 (Page 27). For these ciphers, the cost of transposing data is omitted
from our results, since transposition is done outside of Usuba. Transposition costs vary
depending on the cipher, the slicing mode and the architecture: transposing bitsliced
DES’s inputs and outputs costs about 3 cycles per bytes (on general-purpose registers);
while transposing vsliced SERPENT’s inputs and outputs costs about 0.38 cycles/bytes on
SSE and AVX, and 0.19 cycles/bytes on AVX2.

We have conducted our benchmarks on a Intel Core i5-6500 CPU @ 3.20GHz ma-
chine running Ubuntu 16.04.5 LTS (Xenial Xerus) with Clang 7.0.0, GCC 8.4.0 and ICC
19.1.0. Our experiments showed that no C compiler is strictly better than the others. ICC
is for instance better to compile our CHACHA20 implementation on AVX2, while Clang
is better to compile our SERPENT implementation on AVX. We thus compiled both the
reference implementations and ours with Clang, ICC and GCC, and selected the best-
performing ones.

We report in Table 5.1 the benchmarks of our Usuba implementations of the 9 afore-
mentioned ciphers against the most efficient publicly available implementations. Refer-
ence implementations for the ciphers submitted to the NIST lightweight ciphers compe-
tition (GIMLI, ASCON, ACE, CLYDE) are taken from their NIST submission. For other
ciphers (DES, AES, CHACHA20, SERPENT, RECTANGLE), we provide in Table 5.1 the
sources of the reference implementations. In all cases we instructed Usubac to generate
code using the same SIMD extensions as the reference. We also provide the SLOC (source
lines of code) count of the cipher primitive (i.e., excluding key schedule and counter man-
agement) for every implementation. Usuba programs are almost always shorter than the
reference ones, as well as more portable: for each cipher, a single Usuba code is used
to generate every specialized SIMD code. In the following, we comment on the perfor-
mance of each cipher.

DES is not secure and should not be used in practice. However, the simplicity and
longevity of DES makes for an interesting benchmark: bitslicing was born out of the
desire to provide fast software implementations of DES. There exists several publicly-
available, optimized C implementations in bitsliced mode for 64-bit general-purpose reg-
isters. The execution time of the reference implementation, and even more, of Usuba’s
implementation are reliant on the C compiler’s ability to find an efficient register alloca-
tion: Clang produces a code that is 11.5% faster than GCC for the reference implementa-
tion, and 12% faster than ICC for the Usuba implementation.
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Slicing
mode

Cipher
Instr.

set

Code size Throughput
Speedup(SLOC) (cycles/byte)

Ref. Usuba Ref. Usuba
bitslicing DES [191, 192] x86-64 1053 655 11.31 10.63 +6.01%

16-hslicing AES [174, 175] SSSE3 272 218 5.73 5.93 -3.49%
16-hslicing AES [183, 181] AVX 339 218 5.53 5.81 -5.06%
32-vslicing CHACHA20 [129] AVX2 20 24 1.00 0.99 +1%
32-vslicing CHACHA20 [219] AVX 134 24 2.00 1.98 +1%
32-vslicing CHACHA20 [219] SSSE3 134 24 2.05 2.08 -1.46%
32-vslicing CHACHA20 [61] x86-64 26 24 5.58 5.20 +6.81%
32-vslicing SERPENT [156] AVX2 300 214 4.17 4.15 +0.48%
32-vslicing SERPENT [155] AVX 300 214 8.15 8.12 +0.37%
32-vslicing SERPENT [182] SSE2 300 214 8.88 9.22 -3.83%
32-vslicing SERPENT [235] x86-64 300 214 30.95 22.37 +27.72%
16-vslicing RECTANGLE [309] AVX2 115 31 2.28 1.79 +21.49%
16-vslicing RECTANGLE [309] AVX 115 31 4.55 3.58 +21.32%
16-vslicing RECTANGLE [309] SSE4.2 115 31 5.80 3.71 +36.03%
16-vslicing RECTANGLE [309] x86-64 115 31 26.49 21.77 +17.82%
32-vslicing GIMLI SSE4.2 70 52 3.68 3.11 +15.49%
32-vslicing GIMLI AVX2 117 52 1.50 1.57 -4.67%
64-vslicing ASCON x86-64 68 55 4.96 3.73 +24.80%
32-vslicing ACE SSE4.2 110 43 18.06 10.35 +42.69%
32-vslicing ACE AVX2 132 43 9.24 4.55 +50.86%
64-vslicing CLYDE x86-64 75 71 15.22 10.79 +29.11%

Table 5.1: Comparison between Usuba code & optimized reference implementations

AES fastest hand-tuned SSSE3 and AVX implementations are hsliced. The two reference
implementations are given in hand-tuned assembly. On AVX, one can take advantage
of 3-operand, non-destructive instructions, which significantly reduces register pressure.
Thanks to Usubac, we have compiled our (single) implementation of AES to both targets,
our AVX implementation taking full advantage of the extended instruction set thanks to
the C compiler. Our generated code lags behind hand-tuned implementations for two
reasons. First, the latter fuses the implementation of the counter-mode (CTR) run-time
into the cipher itself. In particular, they locally violate x86 calling conventions so that they
can return multiple values within registers instead of returning a pointer to a structure.
Second, the register pressure is high because the S-box requires more temporaries than
there are available registers. While hand-written implementations were written in a way
to minimize spilling, we rely on the C compiler to allocate registers, and in the case of
AES, it is unable to find the optimal allocation.

CHACHA20 has been designed to be efficiently implementable in software, with an
eye toward SIMD. The fastest implementations to date are vsliced, although some very
efficient implementations use a hybrid mix of vslicing and hslicing (discussed in Sec-
tion 8.1.3, Page 165). As shown in Section 4.2.5 (Page 100), CHACHA20 contains four
calls to a quarter round (QR) function. This function is bottlenecked by data dependen-
cies, and the key to efficiently implement CHACHA20 is to interleave the execution of
these four functions in order to remove any data hazards. Usubac’s scheduler is able to
do so automatically, thus allowing us to perform on-par with hand-tuned implementa-
tions (whose authors manually implemented this optimization).
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SERPENT was designed with bitslicing in mind. It can be implemented with less than
8 64-bit registers. Its fastest implementation is written in assembly, exploiting the AVX2
instruction set. The reference AVX2, AVX and SSE implementations manually interleave
2 parallel instances of the cipher. Usubac’s auto-tuner, however, is able to detect that on
AVX2 and AVX, interleaving 3 implementations is slightly more efficient, thus yielding
similar throughput as the reference implementations (despite generating C code). When
interleaving only 2 implementations, Usubac is a couple of percents slower than hand-
tuned implementations. On general-purpose registers, the reference implementation is
not interleaved, while Usuba’s implementation is, hence the 27% speedup.

RECTANGLE is a lightweight cipher, designed for relatively fast execution on micro-
controllers. It only consumes a handful of registers. We found no high-throughput im-
plementation online. However, the authors were kind enough to send us their SIMD-
optimized implementations. These implementations are manually vsliced in C++ but fail
to take advantage of interleaving: as a result, our straightforward Usuba implementation
easily outperforms the reference one.

GIMLI is a lightweight permutation submitted to the NIST lightweight ciphers compe-
tition (LWC). The reference implementations rely on a hybrid mslicing technique, mix-
ing aspects of vslicing and hslicing (discussed in Section 8.1.3, Page 165). This hybrid
mslicing requires fewer registers than pure vslicing, at the expense of additional shuffles.
The AVX2 implementation takes advantage of the reduced register pressure to enable
interleaving, which would not be efficient in purely vsliced implementation. However,
the authors chose not to interleave their SSE implementations, allowing Usuba to be 15%
faster. Note that another benefit of the hybrid mslicing used in the reference implemen-
tations is that they require less independent inputs to be efficient. The reference imple-
mentation thus has a lower latency if less than 4 (on SSE) or 8 (on AVX2) blocks need to
be encrypted.

ASCON is another candidate to the LWC. The authors provided an optimized imple-
mentation, written in a low-level C: loops have been manually unrolled and functions
manually inlined. In addition to unrolling and inlining nodes, Usubac interleaves AS-
CON twice, thus resulting in a 25% speedup over this reference implementation. When
disabling interleaving and scheduling, the Usuba-generated implementation has indeed
similar performance as the reference one.

ACE provides two vectorized implementations in its LWC submission: one for SSE and
one for AVX. As shown in Section 4.2.5 (Page 100), ACE’s simeck box function is bot-
tlenecked by its data dependencies. By fully inlining and unrolling the code, Usubac is
able to better schedule the code, thus removing any data hazards, which leads to a 42%
speedup on SSE and a 50% speedup on AVX2. Alternatively, if code size matters, the de-
veloper can ask Usubac to interleave ACE twice (using the -interleaving-factor 2
flag), thus removing the need for unrolling and inlining, which produces a smaller code,
while remaining more than 30% faster than the reference implementation.

CLYDE is a primitive used in the Spook submission to the LWC. A fast implementation
for x86 CPUs is provided by the authors. However, because of data hazards in its linear
layer, its IPC is only 2.87, while Usuba’s 3-interleaved optimization reaches an IPC of
3.59, which translates into a 29% speedup.
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Slicing
mode

Cipher
Code size Throughput

Speedup(SLOC) (cycles/byte)
Ref. Usuba Ref. Usuba

32-vslicing PYJAMASK 60 40 268.94 136.70 +49.17%
32-vslicing XOODOO 51 53 6.30 5.77 +8.41%
32-vslicing GIFT 52 65 523.90 327.13 +37.56%

Table 5.2: Comparison between Usuba code & unoptimized reference implementations

We also compared the Usuba implementations on general-purpose registers of 3 can-
didates of the LWC that only provided naive implementations for x86. These imple-
mentations were chosen because they were among the benchmarks of Tornado (Chap-
ter 6), and their reference implementations are sliced (unlike, for instance, PHOTON and
SPONGENT: both of them rely on lookup tables), and therefore comparable with Usuba’s
implementations. In all 3 cases, Usubac-generated implementations are faster than the
reference. While we do not pride ourselves in beating unoptimized implementations,
this still hints that Usuba could be used by cryptographers to provide faster reference
implementations with minimal effort. Our results are presented in Table 5.2.

PYJAMASK is slow when unmasked because of its expensive linear layer. After un-
rolling and inlining several nodes, Usubac’s msliced scheduler is able to interleave sev-
eral parts of this linear layer, which were bottlenecked by data dependencies when iso-
lated. The IPC of the Usuba-generated implementation is thus 3.92, while the reference
one is only at 3.23.

XOODOO leaves little room for optimization: its register pressure is low enough to pre-
vent spilling, but too high to allow interleaving. Some loops are bottlenecked by data
dependencies, but C compilers automatically unroll them, thus alleviating the issue. As
a result, Usuba is only 8% faster than the reference implementation. Furthermore, man-
ually removing unnecessary copies from the reference implementation makes it perform
on-par with Usuba. Still, Usuba can automatically generate SIMD code, which would
easily outperform this x86-64 reference implementation.

GIFT suffers from an expensive linear layer, similarly to PYJAMASK. By inlining it,
Usubac is able to perform some computations at compile time, and once again, improves
the IPC from 3.37 (reference implementation) to 3.93. Note that a recent technique called
fixslicing [8] allows for a much more efficient implementation of GIFT: Usuba’s fixsliced
implementation performs at 38.5 cycles/bytes. However, no reference fixsliced imple-
mentation of GIFT is available on x86 to compare ourselves with: the only fixsliced im-
plementation available is written in ARM assembly. Also, note that despite its name,
there is no relationship between bitslicing/mslicing and fixslicing. For instance, our fixs-
liced implementation of GIFT is in fact vsliced.
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5.2 Scalability

!
The benchmarks of this section are available at:
https://github.com/DadaIsCrazy/usuba/tree/master/bench/
scaling-avx512

The ideal speedup along SIMD extensions grows linearly with the size of registers.
In practice, however, spilling wider registers puts more pressure on the L1 data-cache,
leading to more frequent misses. Also, AVX and AVX512 registers need tens of thou-
sands warm-up cycles before being used, since they are not powered when no instruc-
tion uses them (this is not taken into account in our benchmarks because we include
a warm-up phase). SSE instructions take two operands and overwrite one to store the
result, while AVX offer 3-operand non-destructive instructions, thus reducing register
spilling. 32 AVX512 registers are available against only 16 SSE/AVX ones, thus reducing
the need for spilling. The latency and throughput of most instructions differ from one
microarchitecture to another and from one SIMD to another. For instance, up to 4 gen-
eral purpose bitwise operations can be computed per cycle, but only 3 SSE/AVX, and 2
AVX512. Finally, newer SIMD extensions tend to have more powerful instructions than
older ones. For instance, AVX512 offers, among many useful features, 32-bit and 64-bit
rotations (vprold).

In the following, we thus analyze the scaling of our implementations on the main
SIMD extensions available on Intel: SSE (SSE4.2), AVX, AVX2 and AVX512. These bench-
marks were compiled using Clang 9.0.1, and executed on a Intel Xeon W-2155 CPU @
3.30GHz running a Linux 5.4.0. We distinguish AVX from AVX2 because the latter intro-
duced shifts, n-bit integer arithmetic, and byte-shuffle on 256 bits, thus making it more
suitable for slicing on 256 bits. Our results are shown in Figure 5.1.

We omitted the cost of transposition in this benchmark to focus solely on the crypto-
graphic primitives. The cost of transposition depends on the data layout and the target
instruction set. For example, the transposition of uV 16× 4 can cost as little as 0.09 cy-
cles/byte on AVX512 while the transposition of uH16× 4 costs up to 2.36 cycles/byte on
SSE.

Using AVX instructions instead of SSE (still filled with 128 bits of data though) in-
creases performance from 1% (e.g., RECTANGLE vsliced) up to 31% (e.g., ACE bitslice).
AVX can offer better performance than SSE mainly because they provide 3-operand non-
destructive instructions, whereas SSE only provides 2-operand instructions that over-
write one of their operands to store the results. Using AVX instructions reduces register
pressure, which is especially beneficial for bitsliced implementations: DES, for instance,
contains 3 times less memory operations on AVX than on SSE. Some vsliced ciphers are
also faster thanks to AVX instructions, which is once again due to the reduced register
pressure, in particular when interleaving—which puts a lot of pressure on the registers—
is involved. vsliced ASCON, GIMLI and XOODOO contains respectively 6, 2 and 2.5 times
less memory operations on AVX than on SSE.

We observe across all ciphers and slicing types that using AVX2 rather than AVX
registers doubles performance.
Doubling the size of the register once more by using AVX512 has a very different impact
depending on the ciphers, and is more complex to analyze. First, while 3 arithmetic or
bitwise AVX or SSE instructions can be executed each cycle, it is limited to 2 on AVX512.
Indeed, our msliced AVX2 implementations have IPC above 3, while their AVX512 coun-
terparts are closer to 2. This means that if Clang chooses to use equivalent instructions for
AVX2 and AVX512 instructions (e.g., mm256 xor si256 to perform a xor on AVX2, and

https://github.com/DadaIsCrazy/usuba/tree/master/bench/scaling-avx512
https://github.com/DadaIsCrazy/usuba/tree/master/bench/scaling-avx512
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Figure 5.1: Scaling of Usuba’s implementations on Intel SIMD

mm512 xor si512 on AVX512), the throughput on AVX512 should only be 1.33 times
greater than on AVX2 (×2 because the registers are twice larger, but ×2/3 because only
2 instructions can be executed each cycle instead of 3). However, only 1 shuffle can be
executed each cycle regardless of the SIMD instruction set (SSE, AVX2, AVX512), which
mitigates this effect on hsliced ciphers. Thus, hsliced RECTANGLE is 1.6 times faster on
AVX512 than on AVX2: one eighth of its instructions are shuffles.

Besides providing registers twice as large as AVX2, AVX512 also offer twice more
registers (32 instead of 16), thus reducing spilling. These 16 additional registers reduce
spilling in AVX512 implementations compared to AVX2. Bitslice DES, GIFT, RECTANGLE

and AES thus contain respectively 18%, 20%, 32% and 55% less spilling on AVX512 than
on AVX2, and are 4 to 5 times faster than their SSE counterparts.

Similarly, hsliced AES suffers from some spilling on AVX2, but none on AVX512,
which translates into 13% fewer instructions on AVX512. Furthermore, one eighth of
its instructions are shuffles (which have the same throughput on AVX2 and AVX512).
This translates into a ×1.59 speedup on AVX512 compared to AVX2.

Using AVX512 rather than AVX2, however, tends to increase the rate of cache-misses.
For instance, on GIMLI (resp., XOODOO and SUBTERRANEAN), 14% (resp., 18% and 19%)
of memory loads are misses on AVX512, against less than 2% (resp., less than 3% and
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1%) on AVX2. We thus observe that bitslice implementations of ciphers with large states,
such as GIMLI (384 bits), SUBTERRANEAN (257 bits), XOODOO (384 bits), PHOTON (256
bits), generally scale worse than ciphers with small states, like DES (64 bits), AES (128
bits), PYJAMASK (128 bits), RECTANGLE (64 bits) and SERPENT (128 bits). An exception
to this rule is CLYDE, whose state is only 128 bits, but is only 1.63 faster on AVX512 than
on AVX2: 21% of its memory accesses are misses on AVX512, against only 2% on AVX2.
Another exception is ACE, whose state is 320 bits, and is 1.62 times faster on AVX512:
only 4% of its memory accesses are misses on AVX512. Those effects are hard to predict
since they depend both on the cipher, the compiler, and the hardware prefetcher.

The msliced ciphers that exhibit the best scaling on AVX512 (CHACHA20, ASCON,
CLYDE, ACE, XOODOO) all heavily benefit from the AVX512 rotate instructions. On older
SIMD instruction sets (e.g., AVX2/SSE), rotations had to be emulated using 3 instructions.
For instance, left-rotating a 32-bit integer x by n places can be done using (x << n) |
(x >> (32-n)).
Rotations amount to more than a third of CLYDE’s and CHACHA20’s instructions, and a
fourth of ACE, ASCON, XOODOO’s instructions. For those 5 ciphers, AVX512 thus consid-
erably reduce the number of instructions compared to AVX2 and SSE, which translates
into speedups of ×4 to ×6 compared to SSE.

Let us focus on SERPENT to provide a detailed explanation of scaling from AVX2 to
AVX512. About 1 in 6 instructions of vsliced SERPENT are rotations. SERPENT contains
only 13 spill-related moves on AVX2, which, while absent from the AVX512 implementa-
tion, have little impact on performance. SERPENT contains 2037 bitwise and shift instruc-
tions, and 372 rotations. On AVX512, this corresponds to 2037 + 372 = 2409 instructions.
On AVX2, rotations are emulated with 3 instructions, which causes the total of instruc-
tions to rise to 2037 + (372× 3) = 3153. Since two AVX512 or three AVX2 instructions are
executed each cycle, 2409/2 = 1205 cycles are required to compute the AVX512 version,
and only 3153/3 = 1051 cycles for the AVX2 version. Since the AVX512 implementation
computes twice many instances in parallel than on AVX2, the speedup of the AVX512
should thus be 1051/1205 × 2 = 1.74. In practice, we observe a speedup of ×1.80. The
few additional percents of speedup are partially due to a small approximation in the ex-
planations above: we overlooked the fact that the round keys of SERPENT are stored in
memory, and that as many loads per cycles can be performed on AVX512 and AVX2.

5.3 Polymorphic Cryptographic Implementations

! The benchmarks of this section are available at:
https://github.com/DadaIsCrazy/usuba/tree/master/bench/rectangle

The relative performance of hslicing, vslicing and bitslicing varies from a cipher to
another, and from an architecture to another. For instance, on PYJAMASK, bitslicing is
about 2.3 times faster than vslicing on SSE registers, 1.5 times faster on AVX, and as
efficient on AVX512. On SERPENT however, bitslicing is 1.7 times slower than vslicing on
SSE, 2.8 times slower on AVX, and up to 4 times slower on AVX512.

As explained in Chapter 2, we can specialize our polymorphic implementations to
different slicing types and SIMD instruction sets. Usuba thus allows to easily compare
the throughputs of all possible slicing modes of a cipher. In practice, few ciphers can
be bitsliced, vsliced and hsliced: hslicing (except on AVX512) requires the cipher to rely
on 16-bit (or smaller) values; arithmetic operations constraint ciphers to be only vsliced;
bit-permutations prevent efficient vslicing, and often hslicing as well.

https://github.com/DadaIsCrazy/usuba/tree/master/bench/rectangle
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Figure 5.2: Comparison of RECTANGLE’s monomorphizations

The only two ciphers compatible with all slicing types and all instruction sets are AES

and RECTANGLE. The type of RECTANGLE in Usuba is:

node Rectangle(plain:u16x4, key:u16x4) returns (cipher:u16x4)

Compiling RECTANGLE for AVX2 in vsliced mode produces a C function whose type is:

void Rectangle (__m256i plain[4], __m256i key[26][4], __m256i cipher[4])

and that computes 256/16 = 16 instances of RECTANGLE at once. Targeting instead SSE
registers in bitsliced mode produces a C function whose type is:

void Rectangle (__m128i plain[64], __m128i key[26][64], __m128i cipher[64])

and that computes 128 (the size of the registers) instances of RECTANGLE at once.
Figure 5.2 shows the throughput of vsliced, hsliced and bitsliced RECTANGLE on

general-purpose registers, SSE, AVX, AVX2 and AVX512; all of which were automati-
cally generated from a single Usuba source of 31 lines. We ran this comparison on a
Intel Xeon W-2155 CPU @ 3.30GHz, running Linux 5.4.0, and compiled the C code with
Clang 9.0.1.

Slicing modes and transpositions have different relative performance depending on
the architectures. On general-purpose registers, vsliced RECTANGLE processes inputs
one by one, due to the lack of instruction to perform rotations/shifts on packed data in a
64-bit general-purpose registers. Bitslicing, however, does not require any architecture-
specific instructions and can thus process 64 inputs in parallel on 64-bit registers, easily
outperforming vslicing.

On SIMD extensions, the transposition plays a large part in the overall performance
of the implementations. The hsliced primitive is faster than the vsliced one. However,
transposing data for hslicing is more expensive, which results in lower performance for
hslicing compared to vslicing. As mentioned Section 1.2.2 (Page 35), transposition can be
omitted if both the algorithms used to encrypt and decrypt are using the same slicing. In
such a case, hslicing should be preferred over vslicing for RECTANGLE.

Bitslicing is always slower than mslicing on SIMD instruction sets for RECTANGLE, as
a result of spilling introduced by the huge pressure on the registers caused by bitslicing.
mslicing on the other hand requires a few more instructions (to compute the rotations
of the linear layer of RECTANGLE), but the reduced register pressure largely offset this
overhead.
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The results presented here on RECTANGLE do not constitute an absolute comparison
of bitslicing, vslicing and hslicing. On AES for instance, hslice transposition is cheaper
than on RECTANGLE, and vslicing requires much more instructions that hslicing to com-
pute the ShiftRows step. As a result, hslicing is the obvious choice for AES, whereas
vslicing seems more interesting for RECTANGLE.

Selecting a slicing mode thus requires forethought: the best mode depends on the
ciphers, the available architectures, and the use-cases (i.e., can the transposition be omit-
ted?).

5.4 Conclusion

In this chapter, we evaluated the throughput of the implementations generated by Usubac
on high-end Intel CPUs.
AES is the only cipher on which Usuba is significantly (3 to 5%) slower than hand-tuned
assembly implementations. On the other implementations we considered, Usuba either
performs on-par with hand-optimized implementations (e.g., CHACHA20, SERPENT),
or significantly better (e.g., RECTANGLE, ACE). In all cases, the domain-specific opti-
mizations (i.e., scheduling and interleaving) carried by Usubac are key to achieve high
throughputs with Usuba.

We also showed that, as claimed in the introduction, bitslicing and mslicing are able
to scale well on SIMD extensions: AVX512 implementations reach throughputs up to
6 times greater than SSE implementations Usuba is able to automatically target those
extensions, thus combining portability with high throughput.

Finally, we demonstrated that no slicing is strictly better than the others: bitslicing,
vslicing and hslicing can all be good candidates depending on the cipher, and the targeted
SIMD architecture. Usuba is thus a clear asset, since it allows to easily change slicing
(through its types) and architecture.
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CPUs leak information through timing [185], caches accesses [177, 238, 58], power
consumption [77, 185, 213], electromagnetic radiation [251, 142, 255] and other compro-
mising emanations [294, 303]. A way to recover this leaked information is to design a
Simple Power Analysis (SPA) or a Differential Power Analysis (DPA) attack [186], which
consist in analyzing power or EM traces from a cipher’s execution in order to recover the
key and plaintext.

Several approaches to mitigate SPA and DPA have been proposed. This includes in-
serting dummy instructions, working with both data and their complements, using spe-
cific hardware modules to randomize power consumption [118], or designing hardware
gates whose power consumption is independent of their inputs [290, 245]. The most pop-
ular countermeasure against SPA and DPA, called masking, is, however, based on secret
sharing [80, 276]. Masking, unlike some other countermeasures mentioned above, does
not require custom hardware, and offers provable security: given an attacker model, one
can prove that a masked code does not leak any secret data.

In this chapter, we integrate recent advances in secure masking [52] with Usuba to
build a tool called Tornado, which generates masked implementations that are provably
secure against SPA and DPA. These implementations are meant to be run on low-end
embedded devices, featuring a few kilobytes of RAM, scalar CPU (i.e., not superscalar),
and lacking any SIMD extension. The primary objective here is to generate secure code,
performance being only secondary. Still, we implemented several optimizations (Sec-
tion 6.2.3 and 6.2.4) to speedup our implementations. We then demonstrate the ben-
efits of Tornado by comparing the performances of 11 ciphers from the ongoing NIST
lightweight cryptography competition (LWC) (Section 6.3).
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6.1 Masking

The first masking schemes were proposed by Chari et al. [105] and Goubin and Patarin
[150]. The principle of masking is to split each intermediate value b of a cipher into k
random values r1...rk (called shares) such that b = r1?r2?...?rk for some group operation
?. The most commonly used operation is the exclusive or (Boolean masking), but modular
addition or modular multiplication can also be used (arithmetic masking) [214, 14].

A masked implementation using 2 shares is said to be first-order masked. Early masked
implementations were only first-order masked [214, 14, 83, 146], which is sufficient to
protect against first-order DPA. However, higher order DPA (HO-DPA) can be designed
by combining multiple sources of leakage to reconstruct the secrets, and can break first-
order masked implementations [186, 213, 295, 168]. Several masked implementations us-
ing more than two shares (higher-order masking) where thus proposed to resist HO-DPA
[165, 262, 273, 263, 97]. The term masking order is used to refer to the number of shares
minus one. Similarly, an attack is said to be of order t if it combines t sources of leakage.

The probing-model is widely used to analyze the security of masked software im-
plementations against side-channel attacks. This model was introduced by Ishai et al.
[165] to construct circuits resistant to hardware probing attacks. It was latter shown
[262, 97, 117] that this model and the underlying constructions were instrumental to the
design of efficient secure masked cryptographic implementations. A masking scheme se-
cure against a t-probing adversary, i.e., an adversary who can probe t arbitrary variables
during the computation, is indeed secure by design against the class of side-channel at-
tacks of order t [116].

Most masking schemes consider the cipher as a Boolean or arithmetic circuit. Indi-
vidual gates of the circuit are replaced by gadgets that process masked variables. One of
the important contributions of Ishai et al. [165] was to propose a multiplication gadget
secure against t-probing attacks for any t, based on a Boolean masking of order n = 2t+1.
This was reduced to the tight order n = t + 1 by Rivain et al. [263] by constraining the
two input sharings to be independent, which could be ensured by the application of a
mask-refreshing gadget when necessary. The design of secure refresh gadgets and, more
generally, the secure composition of gadgets were subsequently subject to many works
[117, 44, 46]. Of particular interest, the notions of Non-Interference (NI) and Strong Non-
Interference (SNI) introduced by Barthe et al. [44] provide a practical framework for the
secure composition of gadgets that yields tight probing-secure implementations. In a
nutshell, such implementations are composed of ISW multiplication and refresh gadgets
(from the names of their inventors Ishai, Sahai, and Wagner [165]) achieving the SNI
property, and of share-wise addition gadgets. The main difficulty consists in identifying
the minimal number of refresh gadgets and their (optimal) placing in the implementation
to obtain a provable t-probing security.

Terminology. In the context of a Boolean circuit, multiplications refer to and and or
gates, while additions refer to xor gates. Multiplications (and therefore and and or) are
said to be non-linear, while additions (and therefore xor) are said to be linear.

6.2 Tornado

Belaı̈d et al. [52] introduced tightPROVE, a tool that verifies the t-probing security of a
masked implementation at any order t. This verification is done in the bit probing model,
meaning that each probe only retrieves a single bit of data. It is thus limited to verify the
security of programs manipulating 1-bit variables. Raphaël Wintersdorff, Sonia Belaı̈d,
and Matthieu Rivain recently developed tightPROVE+, an extension of tightPROVE to
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Figure 6.1: Tornado’s pipeline

the register probing model where variables can hold an arbitrary number of bits, all of
which leak simultaneously. Furthermore, tightPROVE+ automatically insert refreshes
when needed, whereas tightPROVE was only able to detect that some refreshes were
missing. We worked with them to integrate tightPROVE+ with Usuba [53]. The resulting
tool is called Tornado. Tornado generates provably t-probing secure masked implemen-
tations in both the bit-probing and the register-probing model.

Given a high-level description of a cryptographic primitive (i.e., an Usuba implemen-
tation), Tornado synthesizes a masked implementation using ISW-based multiplication
and refresh gadgets [165], and share-wise addition gadgets. The key role of Usuba is to
automate the generation of a sliced implementation, upon which tightPROVE+ is then
able to verify either the bit probing or register probing security, or suggest the necessary
refreshes. By integrating both tools, we derive a probing-secure masked implementation
from a high-level description of a cipher.

The overall architecture of Tornado is shown in Figure 6.1. After normalization and
optimization, the Usuba0 program is sent to tightPROVE+, which adds refreshes if nec-
essary (Section 6.2.1). The output of tightPROVE+ is translated back to Usuba0, which
Usubac then masks (Section 6.2.2): variables are replaced with arrays of shares, linear op-
erators and non-linear operators involving constants are applied share-wise, and other
non-linear operators and refreshes are left as is to be replaced by masked gadgets dur-
ing C code generation. Before generating C code, a pass of loop fusion merges share-wise
applications of linear operators when possible (Section 6.2.4).

6.2.1 Encoding and Decoding Usuba0 for tightPROVE+

Tornado targets low-end embedded devices with drastic memory constraints. It is there-
fore essential to produce a C code that uses loops and functions, in order to reduce code
size, especially when masking at high orders. This is one of the main motivations to keep
loops and nodes in the Usuba pipeline.
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static void isw_mult(uint32_t *res,
const uint32_t *op1,
const uint32_t *op2) {

for (int i=0; i<=MASKING_ORDER; i++)
res[i] = 0;

for (int i=0; i<=MASKING_ORDER; i++) {
res[i] ˆ= op1[i] & op2[i];

for (int j=i+1; j<=MASKING_ORDER; j++) {
uint32_t rnd = get_random();
res[i] ˆ= rnd;
res[j] ˆ= (rnd ˆ (op1[i] & op2[j]))

ˆ (op1[j] & op2[i]);
}

}
}

(a) Multiplication

static void isw_refresh(uint32_t *res,
const uint32_t *in) {

for (int i=0; i<=MASKING_ORDER; i++)
res[i] = in[i];

for (int i=0; i<=MASKING_ORDER; i++) {
for (int j=i+1; j<=MASKING_ORDER; j++) {
uint32_t rnd = get_random();
res[i] ˆ= rnd;
res[j] ˆ= rnd;

}
}

}

(b) Refresh

Figure 6.2: ISW gadgets

However, tightPROVE+ only supports straight-line programs, providing no support
for loops and functions. Usubac thus fully unrolls and inlines the Usuba0 code before
interacting with tightPROVE+. The refreshes inserted by tightPROVE+ must then be
propagated back into the Usuba0 program, featuring loops, nodes and node calls.

To do so, when inlining and unrolling, we keep track of the origin of each instruction:
which node they come from, and which instruction within that node. For each refresh
inserted by tightPROVE+, we therefore know where (i.e., which node and which loop,
if any) the refreshed variable comes from, and are therefore able to insert the refresh
directly in the right node.

In order to help tightPROVE+ find where to insert refreshes, a first pass sends each
node (before inlining) to tightPROVE+ for verification. Those nodes are smaller than the
fully inlined program, and tightPROVE+ is thus faster to detect the required refreshes.
Only then are all nodes inlined and the whole program is sent to tightPROVE+. This is
useful for instance on ACE, which contains the following node:

node f(x:u32) returns (y:u32)
let

y = ((x <<< 5) & x) ˆ (x <<< 1)
tel

This node is obviously vulnerable to probing attacks, and tightPROVE+ is able to
insert a refresh on one of the x to make it probing-secure. Once the secure version of f is
inlined in ACE, no other refreshes are needed.

6.2.2 Masking

To mask an Usuba0 program, Usubac replaces each variable with an array of shares,
and each operator with a masked gadget. This is a source-to-source, typed transforma-
tion, which produces a typeable Usuba0 program. The gadget to mask a linear operator
(xor) is simply a loop applying the operator on each share, written directly in Usuba. To
mask a negation, we only negate the first share (since ˜(r0 ˆ r1 ˆ ... ˆ rk) ==
˜r0 ˆ r1 ˆ ... ˆ rk), still in Usuba. To mask non-linear operators (and and or),
however, we introduce the operators m& and m| in Usuba, which are transformed into
calls to masked C gadgets when generating C code. In particular, for the multiplication
(and), we use the so-called ISW gadget, introduced by Ishai et al. [165], shown in Fig-
ure 6.2a. Note that this algorithm has a quadratic complexity in the number of shares.
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node mat_mult(col:u32,vec:u32) returns (res:u32)
vars

mask:u32
let

res = 0;

forall i in [0, 31] {
mask := bitmask(vec,i);
res := res ˆ (mask & col);
col := col >>> 1;

}
tel

Figure 6.3: PYJAMASK matrix multiplication node

ors are transformed into nots and ands, since a | b == ˜(˜a & ˜b). Similarly, re-
freshes, either inserted manually by the developer or automatically by tightPROVE+, are
compiled into calls to the ISW refresh routine (Figure 6.2b) when generating C code.

6.2.3 Constants

Constants are not secret values and thus do not need to be masked. Furthermore, when
multiplying a constant with a secret value, there is no need to use the ISW multiplica-
tion gadgets: we can simply multiply each share of the secret value with the constant.
The cost of masking a multiplication by a constant is thus linear in the number of shares,
rather than quadratic. Our benchmarks (Section 6.3) show that indeed, the more masked
multiplication a cipher has, the slower it is. Avoiding unnecessary masked multiplica-
tions is thus essential.

For instance, PYJAMASK’s linear layer contains a matrix multiplication, implemented
by calling 4 times the mat mult node (Figure 6.3), which multiplies two 32-bit vectors
col and vec. When this node is called in PYJAMASK, col is always constant, and the
multiplication (mask & col) does not need to be masked. Usubac uses a simple static
analysis to track which variables are constant and which are not, and is thus able to iden-
tify that col does not need to be shared, and that the multiplication mask & col does
not need to be masked. This optimization both reduces stack usage (since constant vari-
ables are kept as a single share rather than an array of shares) and increases performance
(since multiplying by a constant becomes linear rather than quadratic).

6.2.4 Loop Fusion

Since each linear operation is replaced with a loop applying the operation on each share,
the masked code contains a lot of loops. The overhead of those loops is detrimental to
performance. Consider for instance the following Usuba0 snippet:

x = a ˆ b;
y = c ˆ d;
z = x ˆ y;

After masking, it becomes:
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forall i in [0, MASKING_ORDER-1] {
x[i] = a[i] ˆ b[i];

}
forall i in [0, MASKING_ORDER-1] {

y[i] = c[i] ˆ d[i];
}
forall i in [0, MASKING_ORDER-1] {

z[i] = x[i] ˆ y[i];
}

In order to reduce the overhead of looping over each share for linear operations, we
aggressively perform loop fusion (also called loop jamming) in Usubac, which consists in
replacing multiple loops with a single one. The above snippet is thus optimized to:

forall i in [0, MASKING_ORDER-1] {
x[i] = a[i] ˆ b[i];
y[i] = c[i] ˆ d[i];
z[i] = x[i] ˆ y[i];

}

Loop fusion is also able to reduce the amount of stack used by allowing Usubac to re-
place temporary arrays with temporary variables. In the example above, Usubac would
thus convert x and y into scalars rather than arrays and produce the following code:

forall i in [0, MASKING_ORDER-1] {
x = a[i] ˆ b[i];
y = c[i] ˆ d[i];
z[i] = x ˆ y;

}

On embedded devices (which Tornado targets), this is especially beneficial since the
amount of stack available is very limited (e.g., a few dozens of kilobytes).

C compilers also perform loop fusion, but experimentally, they are less aggressive
than Usubac. We thus obtain better performance by fusing loops directly in Usubac. On
the 11 ciphers of the NIST LWC we implemented in Usuba and compiled with Tornado,
performing loop fusion in Usubac allows us to reduce stack usage of our bitsliced im-
plementations by 11kB on average whereas this saves us, on average, 3kB of stack for
our msliced implementations (note that our platform offers a measly 96kB of SRAM). It
also positively impacts throughput, with a 16% average speedup for bitslicing and a 21%
average speedup for mslicing.

6.3 Evaluation

We used Tornado to compare 11 cryptographic primitives from the second round of the
ongoing NIST LWC. The choice of cryptographic primitives was made on the basis that
they were self-identified as being amenable to masking. We stress that we do not focus on
the full authenticated encryption, message authentication, or hash protocols but only on
the underlying primitives, mostly block ciphers and permutations. The list of primitives
and the LWC submissions they appear in is given in Table 6.1.

Whenever possible, we generate both a bitsliced and an msliced implementation for
each primitive, which allows us to exercise the bit-probing and the register-probing mod-
els of tightPROVE+. However, 4 primitives do not admit straightforward msliced im-
plementations. The SUBTERRANEAN permutation involves a significant amount of bit-
twiddling across its 257-bit state, which makes it a resolutely bitsliced primitive (as con-
firmed by its reference implementation). PHOTON, SKINNY, SPONGENT rely on lookup
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Submission Primitive msliceable Slice size
State size

(bits)

block ciphers
GIFT-COFB [31],
HYENA [103],

SUNDAE-GIFT [30]
GIFT-128 3 32 128

PYJAMASK [151] PYJAMASK-128 3 32 128
SKINNY [51],

ROMULUS [166]
SKINNY-128-256 7 - 128

Spook [55] CLYDE-128 3 32 128
permutations

ACE [7] ACE 3 32 320
ASCON [128] p12 3 64 320
Elephant [69] SPONGENT-π[160] 7 - 160

GIMLI [68] GIMLI-36 3 32 384
ORANGE [104],

PHOTON-BEETLE [34]
PHOTON-256 7 - 256

Xoodyak [121] XOODOO 3 32 384
others

SUBTERRANEAN [122] blank(8) 7 - 257

Table 6.1: Overview of the primitives selected to evaluate Tornado

tables that would be too expensive to emulate in mslice mode. In bitslicing, these ta-
bles are simply implemented by their Boolean circuit, either provided by the authors
(PHOTON, SKINNY) or generated through SAT [284] with the objective of minimizing
multiplicative complexity (SPONGENT, with 4 ands and 28 xors).

Note that the msliced implementations, when they exist, are either 32-sliced or 64-
sliced. This means in particular that, unlike bitslicing that allows processing multiple
blocks in parallel, these implementations process a single block at once on our 32-bit
Cortex M4. Note also that, in practice, all msliced implementations are vsliced, since
the Cortex M4 we consider does not provide SIMD extensions, which are required for
hslicing.

Running tightPROVE+ on our Usuba implementations showed that all of them were
t-probing secure in the bit-probing model, but 3 were not secure in the register-probing
model. ACE required 384 additional refreshes, CLYDE-128 required 6 refreshes, and
GIMLI required 120 refreshes. In the case of ACE and CLYDE, the number of refreshes
inserted by tightPROVE+ is known to be minimal, while for GIMLI, it is only an upper
bound [53].

6.3.1 Baseline Performance Evaluation

! The benchmarks of this section are available at:
https://github.com/DadaIsCrazy/usuba/blob/master/bench_nist.pl

In the following, we benchmark our implementations—written in Usuba and com-
piled by Tornado—of the NIST LWC submissions against the reference implementation
provided by the contestants. This allows us to establish a performance baseline (with-
out masking), thus providing a common frame of reference for the performance of these

https://github.com/DadaIsCrazy/usuba/blob/master/bench_nist.pl
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primitive
Throughput (cycles/bytes)

(lower is better)
Usuba mslice Usuba bitslice reference

ACE 34.25 55.89 273.53
ASCON 9.84 4.94 5.18
CLYDE 33.72 21.99 37.69
GIMLI 15.77 5.80 44.35
GIFT 565.30 45.51 517.27

PHOTON - 44.88 214.47
PYJAMASK 246.72 131.33 267.35

SKINNY - 46.87 207.82
SPONGENT - 146.93 4824.97

SUBTERRANEAN - 17.64 355.38
XOODOO 14.93 6.47 10.14

Table 6.2: Comparison of Usuba vs. reference implementations on Intel

primitives based on their implementation synthesized from Usuba. In doing so, we have
to bear in mind that the reference implementations provided by the NIST contestants are
of varying quality: some appear to have been finely tuned for throughput while others
focus on simplicity, acting as an executable specification.

Several candidates of the NIST LWC do not provide implementations for ARM de-
vices. However, since they all provide a reference (generic) C implementation, we first
benchmarked our implementations against the reference implementations on an Intel i5-
6500 @ 3.20GHz, running Linux 4.15.0-54. The implementations were compiled with
Clang 7.0.0 with flags -O3 -fno-slp-vectorize -fno-vectorize. These flags
prevent Clang from trying to produce vectorized code, which would artificially advan-
tage some implementations at the expense of others because of brittle, hard-to-predict
vectorization heuristics. At the exception of SUBTERRANEAN (which is bitsliced), the
reference implementations are vsliced, representing the state of the primitive through
a matrix of 32-bit values, or 64-bit in the case of ASCON. To evaluate bitsliced imple-
mentations, we simulate a 32-bit architecture, meaning that the throughput we report
corresponds to the parallel encryption of 32 independent blocks. The cost of transpos-
ing data into a bitslice format (around 9 cycles/bytes to transpose a 32 × 32 matrix) is
excluded.

We disabled nonessential unrolling in Usubac, and used less aggressive inlining than
in Section 5.1 (Page 125), in order to use the same settings as when generating masked
implementations for ARM. As a consequence, we are slower across the board compared
to the results reported in Section 5.1.

The results are shown in Table 6.2. We notice that Usuba often delivers throughputs
that are on par or better than the reference implementations. Note that this does not come
at the expense of readability: our Usuba implementations are written in a high-level lan-
guage. The reference implementations of SKINNY, PHOTON and SPONGENT use lookup
tables, which do not admit a straightforward, constant-time implementation. As a result,
we are unable to implement a constant-time msliced version in Usuba and to mask such
an implementation. We now turn our attention specifically to a few implementations that
exhibit interesting performance.
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SUBTERRANEAN’s reference implementation is an order of magnitude slower than in
Usuba because its implementation is bit-oriented (each bit is stored in a distinct 8-bit
variable) but only a single block is encrypted at a time. Switching to 32-bit variables and
encrypting 32 blocks in parallel, as Usuba does, significantly improves throughput.

SPONGENT is slowed done by a prohibitively expensive bit-permutation over its 160-
bit state, which is spread across 20 8-bit variables. Thanks to bitslicing, Usuba turns
this permutation into a static renaming of variables, which occurs at compile-time. The
reference implementation, however, is not bitsliced and cannot apply this trick.

ASCON. Our mslice implementation of ASCON is twice slower than the reference im-
plementation. Unlike the reference implementation, we have refrained from performing
aggressive function inlining and loop unrolling to keep code size in check, since we tar-
get embedded systems. However, if we instruct the Usuba compiler to perform these
optimizations, our mslice implementation outperforms the reference one, as shown in
Section 5.1 (Page 125).

ACE’s reference implementation suffers from significant performance issues, relying
on an excessive number of temporary variables to store intermediate results. Usuba does
not have such issues, and thus easily outperforms it.

GIMLI offers two reference implementations, one being a high-performance SSE im-
plementation with the other serving as an executable specification on general-purpose
registers. We chose the general-purpose one here (which had not been subjected to the
same level of optimization) because our target architecture (Cortex M) does not provide
a vectorized instruction set.

GIFT’s mslice implementation suffers from severe performance issues because of its
expensive linear layer. Using the recent fixslicing technique [8] improves the throughput
of Usuba’s mslice GIFT implementation down to 42 cycles/bytes.

6.3.2 Masking Benchmarks

! The benchmarks of this section are available at:
https://github.com/pedagand/usuba-nucleo

We ran our benchmarks on a Nucleo STM32F401RE offering an ARM Cortex-M4 with
512 kilobytes of Flash memory and 96 kilobytes of SRAM. We compiled our implemen-
tations using arm-none-eabi-gcc version 9.2.0 at optimization level -O3. We considered
two modes regarding the Random Number Generator (RNG):

• Pooling mode: The RNG generates random numbers at a rate of 32 bits every 64
clock cycles. Fetching a random number can thus take up to 65 clock cycles.

• Fast mode: The RNG has a production rate faster than the consumption rate of the
program. The RNG routine thus can simply read a register containing this 32-bit
random word without checking for its availability.

These two modes were chosen because they are the ones used in PYJAMASK’ LWC
submission, which is the only submission addressing the issue of getting random num-
bers for a masked implementation.

https://github.com/pedagand/usuba-nucleo
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Primitive Mults
/byte

RNG
mode

Performance (cycles/byte)
(lower is better)

d = 0 d = 3 d = 7 d = 15 d = 31 d = 63 d = 127

fast 49 1.1k 3.1k 11.6k 42.5k 163k 640kASCON 1.375 pooling 49 1.3k 4.6k 20.5k 79.2k 324k 1.3M

XOODOO 1.5 fast 63 889 3.3k 10.8k 39.4k 143k 555k
pooling 63 1.7k 7.0k 29.1k 113k 448k 1.7M
fast 92 961 3.5k 11.8k 41.9k 161k 653kCLYDE 3 pooling 92 1.9k 7.6k 31.4k 121k 483k 1.9M

PYJAMASK 3 fast 994 5.0k 12.8k 38.4k 108k 297k 950k
pooling 994 5.9k 17.2k 59.7k 194k 646k 2.3M
fast 56 1.8k 7.1k 24.7k 95.2k 356k 1.4MGIMLI 6 pooling 56 4.0k 17.4k 73.4k 293k 1.2M 4.6M

GIFT 10 fast 1.1k 12.5k 32.3k 77.6k 285k 819k 2.6M
pooling 1.1k 15.3k 44.7k 138k 532k 1.8M 6.4M
fast 92 3.9k 13.3k 40.1k 190k 746k 2.8MACE 19.2 pooling 92 7.5k 32.9k 114k 495k 2.0M 7.8M

(a) Cycles per byte

Primitive Mults RNG
mode

Performance (cycles)
(lower is better)

d = 0 d = 3 d = 7 d = 15 d = 31 d = 63 d = 127

fast 1.5k 15.4k 56.5k 189.4k 670.1k 2.6M 10.4MCLYDE 48 pooling 1.5k 30.1k 121.1k 502.9k 1.9M 7.7M 29.9M

PYJAMASK 56 fast 15.9k 79.5k 205.4k 614.4k 1.7M 4.8M 15.2M
pooling 15.9k 94.9k 274.6k 954.6k 3.1M 10.3M 36.3M
fast 2.0k 42.0k 123.2k 464.4k 1.7M 6.5M 25.6MASCON 60 pooling 2.0k 53.6k 182.8k 821.6k 3.2M 13.0M 52.0M

XOODOO 144 fast 3.0k 42.7k 156.5k 520.3k 1.9M 6.9M 26.6M
pooling 3.0k 82.1k 334.1k 1.4M 5.4M 21.5M 83.0M
fast 17.9k 200.5k 516.3k 1.2M 6.5M 13.1M 42.2MGIFT 160 pooling 17.9k 244.3k 714.9k 2.2M 8.5M 29.1M 102.4M

GIMLI 288 fast 2.7k 85.0k 342.7k 1.2M 4.6M 17.1M 67.2M
pooling 2.7k 190.6k 832.8k 3.5M 14.1M 56.2M 218.9M
fast 3.7k 155.2k 531.6k 1.6M 7.6M 29.8M 113.6MACE 384 pooling 3.7k 302.0k 1.3M 4.6M 19.8M 78.4M 310.8M

(b) Cycles per block

Table 6.3: Performance of Tornado msliced masked implementations

mslicing Scaling

Table 6.3a gives the throughputs of the msliced implementations produced by Tornado
in terms of cycles per byte. Since masking a multiplication has a quadratic cost in the
number of shares, we expect performance at high orders to be mostly proportional with
the number of multiplications used by the primitives. We thus report the number of
multiplications involved in our implementations of the primitives. We observe that, the
higher the masking order, the better ciphers with few multiplications perform (compared
to ciphers with more multiplications), confirming this effect. This is less pronounced at
small orders since the execution time remains dominated by linear operations. Using
the pooling RNG increases the cost of multiplications compared to the fast RNG, which
results in performance being proportional to the number of multiplications at smaller
order than with the fast RNG.

PYJAMASK illustrates the influence of the number of multiplications on scaling. Be-
cause of its use of dense binary matrix multiplications, it involves a significant number
of linear operations for only a few multiplications. As a result, it is slower than GIMLI

and ACE at order 3, despite the fact that they use respectively 2× and 6×more multipli-
cations. With the fast RNG, the inflection point is reached at order 7 for ACE and order 31
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for GIMLI, only to improve afterward. Similarly when compared to CLYDE, PYJAMASK

goes from 5× slower at order 3 to 1.5× slower at order 127 with the fast RNG and 1.2×
slower at order 127 with the pooling RNG. The same analysis applies to GIFT and ACE,
where the linear overhead of GIFT is only dominated at order 63 with the pooling RNG
and at order 127 with the fast RNG.

One notable exception is ASCON with the fast RNG, compared in particular to XOODOO

and CLYDE. Whereas ASCON uses a smaller number of multiplications, it involves a 64-
sliced implementation (Table 6.1), unlike its counterparts that are 32-sliced. Running on
our 32-bit Cortex-M4 requires GCC to generate 64-bit emulation code, which induces
a significant operational overhead and prevents further optimization by the compiler.
When using the pooling RNG however, ASCON is faster than both XOODOO and CLYDE

at every order, thanks to its smaller number of multiplications.
For scenarios in which one is not interested in encrypting a lot of data but rather a

single block, possibly short, then it makes more sense to look at the performances of a
single run of a cipher, rather than its amortized performances over the amount of bytes it
encrypts. This is shown in Table 6.3b. The ciphers that use the least amount of multipli-
cations have the upper hand when masking order increases: CLYDE is clearly the fastest
primitive at order 127, closely followed by PYJAMASK. ASCON, which is the fastest one
when looking at the cycles per bytes actually owns its performances to his low number
of multiplications compared to its 320-bit block size. Therefore, when looking at a single
run, it is actually 1.7× slower than CLYDE at order 127. Similarly, XOODOO performs well
on the cycles per bytes metric, but has a block size of 384 bits, making it 2.5× slower than
CLYDE.

Bitslicing Scaling

The key limiting factor to execute bitsliced code on an embedded device is the amount
of memory available. Bitsliced programs tend to be large and to consume a significant
amount of stack. Masking such implementations at high orders quickly becomes imprac-
tical because of the quadratic growth of the stack usage.

To reduce stack usage and allow us to explore high masking orders, our bitsliced pro-
grams manipulate 8-bit variables, meaning that 8 independent blocks can be processed
in parallel. This trades memory usage for throughput, as we could have used 32-bit vari-
ables and improved our throughput by a factor 4. However, doing so puts an unbear-
able amount of pressure on the stack, which would have prevented us from considering
masking orders beyond 7. Besides, it is not clear whether there is a use-case for such a
massively parallel (32 independent blocks) encryption primitive in a lightweight setting.
As a result of our compilation strategy, we have been able to mask all primitives with
up to 16 shares and, additionally, reach 32 shares for PHOTON, SKINNY, SPONGENT and
SUBTERRANEAN.

Table 6.4a and 6.4b report the throughput of our bitsliced implementations with the
fast and pooling RNGs. As for the msliced implementations, we observe a close match
between the asymptotic throughput of the primitive and their number of multiplications
per bits, which becomes even more prevalent as order increases and the overhead of
linear operations becomes comparatively smaller. PYJAMASK remains a good example to
illustrate this phenomenon, the inflection point being reached at order 15 with respect to
ACE (which uses 3×more multiplications).

While ASCON with the fast RNG is slowed down by its suboptimal use of 64-bit reg-
isters in mslicing, its throughput in bitslicing is similar to XOODOO’s, which exhibits
the same number of multiplications per bits. Finally, we observe that with the pooling
RNG, and starting at order 15, the throughput of our implementations is in accord with
their relative number of multiplications per bits. In bitslicing (more evidently than in
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Primitive Mults/bits
Throughput (cycles/bytes)

(lower is better)
d = 0 d = 3 d = 7 d = 15 d = 31

SUBTERRANEAN 8 94 2.1k 7.2k 27.2k 95.2k
ASCON 12 101 3.1k 11.4k 42.4k -

XOODOO 12 112 3.1k 10.5k 38.4k -
CLYDE 12 177 3.4k 13.6k 45.3k -

PHOTON 12 193 7.7k 14.3k 45.0k 154k
PYJAMASK 14 1.6k 16.5k 31.8k 97.9k -

GIMLI 24 127 5.5k 19.1k 76.9k -
ACE 38 336 8.2k 35.3k 123k -
GIFT 40 358 11.1k 36.8k 136k -

SKINNY 48 441 18.2k 61.8k 200k 664k
SPONGENT 80 624 19.4k 64.8k 259k 948k

(a) Fast RNG

Primitive Mults/bits
Throughput (cycles/bytes)

(lower is better)
d = 0 d = 3 d = 7 d = 15 d = 31

SUBTERRANEAN 8 94 4.46k 19.13k 79.63k 312k
ASCON 12 101 7.33k 30.33k 125k -

XOODOO 12 112 6.69k 28.79k 120k -
CLYDE 12 177 7.88k 31.04k 127k -

PHOTON 12 193 10.47k 31.77k 126k 476k
PYJAMASK 14 1.59k 20.33k 52.81k 193k -

GIMLI 24 127 12.14k 53.64k 236k -
ACE 38 336 19.94k 89.12k 395k -
GIFT 40 358 21.38k 93.92k 405k -

SKINNY 48 441 34.28k 131k 525k 1.97M
SPONGENT 80 624 44.04k 188k 816k 3.15M

(b) Pooling RNG

Table 6.4: Throughput of Tornado bitsliced masked implementations

mslicing), the number of multiplications is performance critical, even at relatively low
masking order.

6.3.3 Usuba Against Hand-Tuned Implementations

Of these 11 NIST submissions, only PYJAMASK provides a masked implementation. Our
implementation is consistently (at every order, and with both the pooling and fast RNGs)
1.8 times slower than their masked implementation. The main reason is that they manu-
ally optimized in assembly the two most used routines.

The first one is the matrix multiplication shown in Figure 6.3 (Page 139). When com-
piled with arm-none-eabi-gcc 4.9.3, the body of the loop compiles to 6 instructions. The
reference implementation, on the other hand, inlines the loop and uses ARM’s barrel
shifter. As a result, each iteration takes only 3 instructions. Using this hand-tuned matrix
multiplication in our generated code offers a speedup of 15% to 52%, depending on the
masking order, as shown in Table 6.5a. The slowdown is less important at high masking
orders because this matrix multiplication has a linear cost in the masking order, while the
masked multiplication has a quadratic cost in the masking order (since it must compute
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masking order 3 7 15 31 63 127
speedup 52% 49% 43% 34% 24% 15%

(a) Hand-Tuned mat mult compared to Usuba’s mat mult

masking order 3 7 15 31 63 127
speedup 14% 21% 33% 37% 39% 41%

(b) Hand-tuned ISW multiplication compared to the C implementation of Figure 6.2a

Table 6.5: Speedups gained by manually implementing key routines in assembly

all cross products between two shared values).
The second hand-optimized routine is the masked multiplication. The authors of the

reference implementation used the same ISW multiplication gadget as we used in Usuba
(shown in Figure 6.2a) but manually optimized it in assembly. They unrolled twice the
main loop of the multiplication, then fused the two resulting inner loops, and carefully
assigned 6 variables to registers. If we notem the masking order, this optimization allows
the masked multiplication to require m fewer jumps (m/2 for inner loops and m/2 outer
loops), to use m/2× 10 less memory accesses thanks to their manual assignment of array
values to registers, and to require m/2 × 3 less memory accesses thanks to the merged
inner loops. GCC fails to perform this optimization automatically.

Unlike the hand-optimized matrix multiplication, whose benefits diminish as the
masking order increases, the optimized masked multiplication is more beneficial at higher
masking order, as shown in Table 6.5b, which compares the hand-tuned assembly ISW
multiplication against the C implementation of Figure 6.2a.

While the Usuba implementations can be sped up by using the hand-tuned version of
the ISW masked multiplication, these two examples (matrix multiplication and masked
multiplication) hint at the limits of achieving high performance by going through C. In-
deed, while the superscalar nature of high-end CPUs can make up for occasional sub-
optimal code produced by C compilers, embedded devices are less forgiving. Simi-
larly, Schwabe and Stoffelen [274] designed high-performance implementations of AES

on Cortex-M3 and M4 microprocessors, and preferred to write their own register alloca-
tor and instruction scheduler (in fewer than 250 lines of Python), suggesting that GCC’s
register allocator and instruction scheduler may be far from optimal for cryptography on
embedded devices.
We leave to future work to directly target ARM assembly in Usuba, and to implement
architecture-specific optimizations for embedded microprocessors.

6.4 Conclusion

In this chapter, we extended Usubac to automatically generate probing-secure imple-
mentations in the bit-probing and register-probing model. By relying on tightPROVE+,
we are able to achieve provable security.

We used this extension of Usubac to compare the performance of 11 ciphers from the
ongoing NIST lightweight cryptography competition, at masking orders varying from 3
to 127.

6.4.1 Related Work

Several approaches have been proposed to automatically secure implementations against
power-based side-channel attacks.
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Bayrak et al. [47] designed one of the first automated tools to protect cryptographic
code at the software level. Their approach is purely empirical: they identify sensitive
operations by running the cipher while recording power traces. The operations that are
found to leak information are then protected using random precharging [289], which
consists in adding random instructions before and after the leaking instructions so as to
lower the signal-to-noise ratio.

Agosta et al. [12] developed a tool to automatically protect ciphers against DPA using
code morphing, which consists in dynamically (at runtime) generating and randomly
choosing the code to be executed. To do so, the cipher is broken into fragments of a
few instructions. For each fragment, several alternative (but semantically equivalent) se-
quences of instructions are generated at compile time. At runtime, a polymorphic engine
selects one sequence from each of the fragments. The resulting code can leak secret data,
but an attacker would not know where in the original cipher the leak is, since the code
executing is dynamically randomized.

Moss et al. [221] proposed the first compiler to automate first-order Boolean masking,
based on CAO [37]. Developers add secret or public annotations to the inputs of the
program, and the compiler infers for each computation whether the result is secret
(one of its operands is secret) or public (all operands are public). The compiler then
searches for operations on secret values that break the masking (for instance a xor
where the masks of the operands would cancel out), and fixes them by changing the
masks of its operands.

Agosta et al. [13] designed a dataflow analysis to automatically mask ciphers at higher
orders. Their analysis tracks the secret dependencies (plaintext or key) of each interme-
diate variable, and is thus able to detect intermediate results that would leak secret in-
formation and need to be masked. They implemented their algorithm in LLVM [196],
allowing them to mask ciphers written in C (although they require some annotations in
the C code to identify the plaintext and key).

Sleuth [48] is a tool to automatically verify whether an implementation leaks informa-
tion that is statistically dependent for any secret input and would thus be vulnerable to
SCA. Sleuth reduces this verification to a Boolean satisfiability problem, which is solved
using a SAT solver. Sleuth is implemented as a pass in the LLVM backend, and thus
ensures that the compiler does not break masking by reordering instructions.

Eldib et al. [133] developed a tool similar to Sleuth called SC Sniffer. However,
whereas Sleuth verifies that all leakage is statistically independent of any input, SC Snif-
fer ensures that a cipher is perfectly masked, which is a stronger property: a masked
algorithm is perfectly masked at order d if the distribution of any d intermediate results
is statistically independent of any secret input [83]. SC Sniffer is also implemented as an
LLVM pass and relies on the Yices SMT solver [131] to conduct its analysis. Eldib and
Wang [132] then built MC Masker, to perform synthesis of masking countermeasures
based on SC Sniffer’s analysis. MC Masker generates the masked program using induc-
tive synthesis: it iteratively adds countermeasures until the SMT solver is able to prove
that the program is perfectly masked.

Barthe et al. [43] proposed to verify masking using program equivalence. More specif-
ically, their tool (later dubbed maskverif), inspired by Barthe et al. [41], tries to construct
a bijection between the distribution of intermediate values of the masked program of
interest and a distribution that is independent from the secret inputs. maskverif scales
better than previous work (e.g., MC Masker) at higher masking order, even though it is
not able to handle a full second-order masked AES. Furthermore, maskverif is not limited
to analyze 1-bit variables, unlike Sleuth and SC Sniffer.

Barthe et al. [44] later introduced the notion of strong non-interference. Intuitively, a
strongly t-non-interfering code is t-probing secure (or t-non-interfering) and composable
with any other strongly t-non-interfering code. This is a stronger property than t-probing
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security, since combining t-probing secure gadgets does not always produce a t-probing
secure implementation [117]. They developed a tool (later dubbed maskComp) to gen-
erate masked C implementations from unmasked ones. Unlike previous work which
could only verify the security of an implementation at a given order, maskComp is able
to prove the security of an implementation at any order.

Coron [115] designed a tool called CheckMasks to automatically verify the security of
higher-order masked implementations, similarly to maskverif [43]. For large implemen-
tations, CheckMasks can only verify the security at small orders. However, CheckMasks
is also able to verify the t-SNI (or t-NI) property of gadgets at any order.





Chapter 7

Protecting Against Fault Attacks and
Power-based Side-channels Attacks

Publication

This work was done in collaboration with Pantea Kiaei (Virginia Tech), Patrick
Schaumont (Worcester Polytechnic Institute), Karine Heydemann (LIP6) and
Pierre-Évariste Dagand (LIP6). It led to the following publication:

P. Kiaei, D. Mercadier, P. Dagand, K. Heydemann, and P. Schaumont. Custom
instruction support for modular defense against side-channel and fault attacks. In
Constructive Side-Channel Analysis and Secure Design - 11th International Workshop,
COSADE, October 5-7, 2020. Springer, 2020. URL https://eprint.iacr.org/
2020/466

In Chapter 6, we showed how to generate DPA-resistant implementations with Usubac
using masking countermeasures. In this chapter, we pursue a similar line of work, and
present a backend of Usubac that generates implementations that are resilient to both
DPA and fault attacks. This is achieved by exploiting the SKIVA architecture, a 32-bit
CPU with custom instructions to enable masking and fault countermeasures (Section 7.2).
We evaluate the throughput and fault resistance of an AES implementation on SKIVA in
Section 7.3, thus showing that SKIVA allows to efficiently enable side-channel counter-
measures.

7.1 Fault Attacks

Fault attacks [88, 35, 171, 39] consist in physically tampering with a cryptographic device
in order to induce faults in its computations. The most common ways to do so consist in
under-powering [139] or overpowering [25, 188], blasting ionizing light (e.g., lasers) [280,
157, 271], inducing clock glitches [20, 28], using electromagnetic (EM) pulses [271, 252],
or even heating up or cooling down [279], or using X-rays or ion beams [35].

There are several ways to exploit fault attacks. Algorithm-specific attacks aim at
changing the behavior of a cipher at the algorithmic level by modifying either some of
its data [108] or alter its control flow by skipping [270] or replacing [28] some instruc-
tions. Differential fault analysis (DFA) [76] uses differential cryptanalysis techniques to
recover the secret key by comparing correct and faulty ciphertexts produced from the
same plaintexts. Safe-error attacks (SEA) [308] simply observes whether a fault has an
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impact on the output of the cipher, and thus deduce the values of some secret variables.
Statistical fault analysis (SFA) [141], unlike SEA and DFA does not require correct (i.e.,
not faulted) ciphertexts: by injecting a fault at a chosen location and partially decrypting
the ciphertext up to that location, SFA can be used to recover secret bits. Ineffective fault
attacks (IFA) [109] are similar to SEA: the basic idea is to set an intermediate variable at
0 (using a so-called stuck-at-zero faults), and if the ciphertext is unaffected by this fault
(the fault is ineffective), this means that the original value of this intermediate variable
was already 0, thus revealing secret information. Finally, based on SFA and IFA, SIFA
[127] uses ineffective faults to deduce a bias in the distribution of some secret data.

Various countermeasures have been proposed to prevent fault attacks. Hardware
protections can either prevent or detect faults, using for instance active or passive shields
[188], integrity checks [162] or other tampering detection mechanisms [5, 298, 106]. How-
ever, these techniques tend to be expensive and lack genericity: each countermeasure
protects against a known set of attacks and the hardware might still be vulnerable to new
attacks [35]. Software countermeasures, on the other hand, are less expensive and easier
to adapt to new attacks. Software countermeasures can be either part of the design of
the cryptographic algorithm—in the protocol [210] or the primitive [278]—or applied to
implementations of existing ciphers, such as using redundant operations, error detection
codes or consistency checks [145, 209, 173, 143].

One must be careful when implementing countermeasures against fault attack, since
they can increase the vulnerability to other side-channel analysis [256, 257, 112]. For in-
stance, Kiaei et al. [179] showed that using direct redundant bytes leaks more information
than using complementary redundant bytes.

Only few works deal with protection against both side-channel analysis and fault in-
jection. Cnudde and Nikova [110, 111] proposed a hardware-oriented approach where
redundancy is applied on top of a masked implementation to obtain combined resistance
against faults and SCA. ParTI [272] is a protection scheme that combines threshold im-
plementation (TI) [225] –to defend against SCA– and concurrent error detection [204] –to
thwart fault attacks. However, ParTI only targets hardware implementations, and the
faults it is able to detect are limited in hamming weight. By comparison, CAPA [260]
is based on secure multiparty computations protocols (MPC), which allows it to detect
more faults than ParTI. Still, CAPA is hardware-oriented and expensive to adapt to soft-
ware. Finally, Simon et al. [278] proposed the Frit permutation, which is secure against
both faults and SCA by design, and efficient both in hardware and software. However,
no solution exists to efficiently secure legacy ciphers at the software level.

7.2 SKIVA

SKIVA is a custom 32-bit processor developed by Pantea Kiaei (Virginia Tech) and Patrick
Schaumont (Worcester Polytechnic Institute), in collaboration with Karine Heydemann
(LIP6), Pierre-Evariste Dagand (LIP6) and myself. It enables a modular approach to coun-
termeasure design, giving programmers the flexibility to protect their ciphers against
timing-based and power-based side-channel analysis as well as fault injection at various
levels of security.
Using the bitslicing model, SKIVA views its 32-bit processor as 32 parallel 1-bit processors
(called slices). SKIVA then proposes an aggregated slice model, which consists in allocating
multiple slices for each bit of data: aggregated slices can be shares of a masked design,
redundant data of a fault-protected design, or a combination of both.
SKIVA relies on custom hardware instructions to efficiently and securely compute on
aggregated slices (Section 7.2.1). Those new instructions are added to the SPARC V8 in-
struction set of the open-source LEON3 processor. A patched version of the Leon Bare-C



7.2. SKIVA 153

(D,Rs) = (1, 1)b10b11b12b13b14b15b16b17b18b19b110b111b112b113b114b115b116b117b118b119b120b121b122b123b124b125b126b127b128b129b130b131

(D,Rs) = (1, 2)b10b11b12b13b14b15b16b17b18b19b110b111b112b113b114b115b10b11b12b13b14b15b16b17b18b19b110b111b112b113b114b115

(D,Rs) = (1, 4)b10b11b12b13b14b15b16b17b10b11b12b13b14b15b16b17b10b11b12b13b14b15b16b17b10b11b12b13b14b15b16b17

(D,Rs) = (2, 1)b10b20b11b21b12b22b13b23b14b24b15b25b16b26b17b27b18b28b19b29b110b210b111b211b112b212b113b213b114b214b115b215

(D,Rs) = (2, 2)b10b20b11b21b12b22b13b23b14b24b15b25b16b26b17b27b10b20b11b21b12b22b13b23b14b24b15b25b16b26b17b27

(D,Rs) = (2, 4)b10b20b11b21b12b22b13b23b10b20b11b21b12b22b13b23b10b20b11b21b12b22b13b23b10b20b11b21b12b22b13b23

(D,Rs) = (4, 1)b10b20b30b40b11b21b31b41b12b22b32b42b13b23b33b43b14b24b34b44b15b25b35b45b16b26b36b46b17b27b37b47

(D,Rs) = (4, 2)b10b20b30b40b11b21b31b41b12b22b32b42b13b23b33b43b10b20b30b40b11b21b31b41b12b22b32b42b13b23b33b43

(D,Rs) = (4, 4)b10b20b30b40b11b21b31b41b10b20b30b40b11b21b31b41b10b20b30b40b11b21b31b41b10b20b30b40b11b21b31b41

Figure 7.1: Bitslice aggregations on a 32-bit register, depending on (D,Rs).

Cross Compilation System’s (BCC) toolchain makes those instructions available in as-
sembly and in C (using inline assembly).

Usuba provides a SKIVA backend, thus freeing developers from the burden of writing
low-level assembly code to target SKIVA. Furthermore, SKIVA offers 9 different levels of
security through 9 combinations of countermeasures: a single Usuba program can be
compiled to either. While Tornado is integrated at multiple stages of Usubac’s pipeline
(Chapter 6), SKIVA is only integrated as a backend and thus only affects code generation:
instead of generating standard C code, Usuba can emit SKIVA-specific instructions.

7.2.1 Modular Countermeasures

SKIVA supports four protection mechanisms that can be combined in a modular man-
ner: bitslicing to protect against timing attacks, higher-order masking to protect against
power side-channel leakage, intra-instruction redundancy to protect against data faults
(faults on the dataflow) and temporal redundancy to protect against control faults (faults
on the control flow). We use AES as an example, but the techniques are equally applicable
to other bitsliced ciphers.

SKIVA requires ciphers to be fully bitsliced. For instance, the 128-bit input of AES is
represented with 128 variables. Since each variable stores 32 bits on SKIVA, 32 instances
of AES can be computed in a single run of the primitive. The key to compose counter-
measures in SKIVA is to use some of those 32 instances to store redundant bits (to protect
against fault attacks), or masked shares (to protect against power analysis).

Figure 7.1 shows the organization of the slices for masked and intra-instruction-redundant
design. By convention, the letter D is used to denote the number of shares (D ∈ {1, 2, 4})
of a given implementation, and Rs to denote the spatial redundancy (Rs ∈ {1, 2, 4}).

SKIVA supports masking with 1, 2, and 4 shares leading to respectively unmasked,
1st-order, and 3rd-order masked implementations. Within a machine word, the D shares
encoding the ith bit are grouped together, as illustrated by the contiguously colored bits
b
j∈[1,D]
i in Figure 7.1. SKIVA also supports spatial redundancy by duplicating a single

slice into two or four slices. Within a machine word, the Rs duplicates of the ith bit are
interspersed every 32/Rs bit, as illustrated by the alternation of colored words bji∈[1,Rs] in
Figure 7.1.
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a₃₁ a₃₀ a₂₉ a₂₈ ... a₃ a₂ a₁ a₀ b₃₁ b₃₀ b₂₉ b₂₈ ... b₃ b₂ b₁ b₀

TR2

a₃₁ a₃₀ a₁₅ ... a₁₇ a₁₆b₃₁ b₃₀ b₁₄ a₁ b₀b₁₇ b₁₆ b₁₅ a₁₄ b₁ a₀...

(a) The tr2 instruction

c₀ c₁ c₂ c₃

a₀ a₁ a₂ a₃

b₀ b₁ b₂ b₃

d₀ d₁ d₂ d₃

c₀ c₁a₀ a₁

c₂ c₃a₂ a₃

b₀ b₁d₀ d₁

b₂ b₃d₂ d₃

c₀a₀ b₀ d₀

c₁a₁ b₁ d₁

c₂a₂ b₂ d₂

c₃a₃ b₃ d₃

TR2

TR2

TR2

TR2

(b) 4× 4 matrix transposition using tr2

Figure 7.2: SKIVA’s tr2 instruction

Instructions for Bitslicing

To efficiently transpose data into their bitsliced representation, SKIVA offers the instruc-
tion tr2 (and invtr2 to perform the inverse transformation), which interleaves two
registers, as shown in Figure 7.2a. Transposing a n×n matrix can be done using n×2n−1

tr2 instructions. For instance, Figure 7.2b shows how to transpose a 4 × 4 matrix using
4 tr2. By comparison, transposing the same 4 × 4 matrix without the tr2 instruction
requires 32 operations (as shown in Section 1.2.2, Page 35): 8 shifts, 8 ors and 16 ands.

7.2.2 Higher-order Masked Computation

Designing masking schemes is orthogonal to SKIVA, which can be seen as a common
platform to evaluate masking designs. SKIVA merely offers hardware support to write
efficient software implementations of gadgets, as well as a way to combine masking with
other countermeasures. Thus, any masking schemes can be used on SKIVA by just pro-
viding a software implementation of its gadgets.

To demonstrate SKIVA on AES, we used the NINA gadgets [125], which provides security
against both side-channel attacks and faults using the properties of non-interference (NI)
and non-accumulation (NA).

In our data representation, the D shares representing any given bit are stored in the
same register, as opposed to being stored in D distinct registers. This choice allows a
straightforward composition of masking and redundancy, and is consistent with some
previous masked implementations [167].
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a₃₁ a₃₀ a₂₉ a₂₈ ... a₇ a₆ a₅ a₄a₂₇ a₂₆ a₂₅ a₂₄ a₃ a₂ a₁ a₀

a₃₁a₃₀ a₂₉ a₂₈ ... a₇a₆ a₅a₄a₂₇a₂₆ a₂₅ a₂₄ a₃a₂ a₁a₀

subrot 2

(a) Two-shares slices rotations

a₃₁ a₃₀ a₂₉ a₂₈ ... a₇ a₆ a₅ a₄a₂₇ a₂₆ a₂₅ a₂₄ a₃ a₂ a₁ a₀

subrot 4

a₃₁a₃₀ a₂₉ a₂₈ ... a₇a₆ a₅ a₄a₂₇a₂₆ a₂₅ a₂₄ a₃a₂ a₁ a₀

(b) Four-shares slices rotations

Figure 7.3: SKIVA’s subrot instructions

Instructions for Higher-Order Masking

Computing a masked multiplication between two shared values a and b requires com-
puting their partial share-products. For instance, if a and b are represented by two shares
(a0,a1) and (b0,b1), then the partial products a0 · b0, a0 · b1, a1 · b0 and a1 · b1 need to be com-
puted. Since all the shares of a given value are stored in several slices of the same register,
a single and computes n partial products at once (where n is the number of shares). The
shares then need to be rotated in order to compute the other partial products. SKIVA
offers the subrot instruction to perform this rotation on sub-words. Depending on an
immediate parameter, subrot either rotates two-shares slices (Figure 7.3a) or four-shares
slices (Figure 7.3b).

7.2.3 Data-redundant Computation

SKIVA uses intra-instruction redundancy (IIR) [240, 193, 107] to protect implementations
against data faults. It supports either a direct redundant implementation, in which the
duplicated slices contain the same value, or a complementary redundant implemen-
tation, in which the duplicated slices are complemented pairwise. For example, with
Rs = 4, there can be four exact copies (direct redundancy) or two exact copies and two
complementary copies (complementary redundancy).

In practice, complementary redundancy is favored over direct redundancy. First, it
is less likely for complemented bits to flip to consistent values during a single fault in-
jection. For instance, timing faults during state transition [311] or memory accesses [28]
follow a random word corruption or a stuck-at-0 model. Second, complementary slices
ensure a constant Hamming weight for a slice throughout the computation of a cipher.
Furthermore, Kiaei et al. [179] showed that complementary redundancy results in re-
duced power leakage compared to direct redundancy.

Instructions for Fault Redundancy Checking and Generation

In order to generate redundant bytes to counter fault attacks, SKIVA provides the red
instruction. This instruction can be used to generate either direct redundancy or com-
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plementary redundancy, and works for both two-shares and four-shares. An immedi-
ate passed as parameter controls which redundancy (direct, complementary, n shares) is
generated. For instance, to generate two-shares complementary redundant values, the
immediate 0b011 would be passed to red (Figure 7.4a), while to generate four-shares
complementary redundant values, the immediate 0b101 would be used (Figure 7.4b).

The instruction ftchk is used to verify the consistency of redundant data. In its
simplest form, it simply computes the xnor (a xor followed by a not) of the comple-
mentary redundant shares of its argument. If the result is anything but 0, then both half
of the inputs are not (complementary) redundant, which means that a fault was injected.
Figure 7.4c illustrates ftchk on a two-shares value.

In order to prevent ineffective fault attacks (IFA and SIFA), ftchk can perform majority-
voting on four-shares redundant values. Figure 7.4d illustrates the behavior of ftchk in
majority-voting mode on a four-shares complementary redundant value (where majority
returns the most common of its input).

Instructions for Fault-Redundant Computations

Computations on direct-redundant data can be done using standard bitwise operations.
However, for complementary redundant data, the bitwise operations have to be adjusted
to complement operations. SKIVA thus offers 6 bitwise instructions to compute on com-
plementary redundant values. andc16 (resp., xorc16 and xnorc16), illustrated in Fig-
ure 7.5a, performs and (resp., xor and bxnor) on the lower half of its two-shares re-
dundant arguments, and a nand (resp., xnor and xor) on the upper half. Similarly,
andc8 (resp., xorc8 and xnorc8), illustrated in Figure 7.5b, work in the same way on
four-shares redundant values.

These operations can be simply written in C as follows, but would take 5 instructions
each:

#define ANDC8(a,b) ((((a) | (b)) & 0xFF00FF00) |
(((a) & (b)) & 0x00FF00FF))

#define XORC8(a,b) ((˜((a) ˆ (b)) & 0xFF00FF00) |
(((a) ˆ (b)) & 0x00FF00FF))

#define ANDC16(a,b) ((((a) | (b)) & 0xFFFF0000) |
(((a) & (b)) & 0x0000FFFF))

#define XORC16(a,b) ((˜((a) ˆ (b)) & 0xFFFF0000) |
(((a) ˆ (b)) & 0x0000FFFF))

#define XNORC8(a,b) ((((a) ˆ (b)) & 0xFF00FF00) |
(˜((a) ˆ (b)) & 0x00FF00FF))

#define XNORC16(a,b) ((((a) ˆ (b)) & 0xFFFF0000) |
(˜((a) ˆ (b)) & 0x0000FFFF))

7.2.4 Time-redundant Computation

Data-redundant computation does not protect against control faults such as instruction
skip. We protect our implementation against control faults using temporal redundancy
(TR) across rounds [240]. We pipeline the execution of 2 consecutive rounds in 2 aggre-
gated slices. By convention, we use the letter Rt to distinguish implementations with
temporal redundancy (Rt = 2) from implementations without (Rt = 1). For Rt = 2, half
of the slices compute round i while the other half compute round i− 1.

Figure 7.6 illustrates the principle of time-redundant bitslicing as applied to AES com-
putation. The operation initializes the pipeline by filling half of the slices with the output
of the first round of AES, and the other half with the output of the initial key whiten-
ing. At the end of round i + 1, we have recomputed the output of round i (at a later
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(a) Two-shares complementary redundancy generation
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a₃₁..₁₆
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(0b0011)

a₁₅..₀
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(c) Two-shares complementary redundancy fault checking
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(d) Four-shares complementary redundancy majority
voting

Figure 7.4: SKIVA’s redundancy-related instructions
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b₃₁..₁₆

a₃₁..₁₆

a₃₁..₁₆ | b₃₁..₁₆

andc16

a₁₅..₀

b₁₅..₀
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or and

(a) Four-shares andc16
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a₁₅..₈ | b₁₅..₈ a₇..₀ & b₇..₀

or or and

(b) Four-shares andc8

Figure 7.5: SKIVA’s redundant and instructions

time): we can, therefore, compare the two results and detect control faults based on the
different results they may have produced. In contrast to typical temporal-redundancy
countermeasures such as instruction duplication [311], this technique does not increase
code size: the same instructions compute both rounds at the same time. Only the last AES

round, which is distinct from regular rounds, must be computed twice in a non-pipelined
fashion.

Whereas pipelining protects the inner round function, faults remain possible on the
control path of the loop itself. We protect against these threats through standard loop
hardening techniques [161], namely redundant loop counters—packing multiple copies
of a counter in a single machine word—and duplication of the loop control structure—
producing multiple copies of conditional jumps so as to lower the odds of all of them
being skipped through an injected fault.

7.3 Evaluation

We used Usubac to generate the 18 different implementations of AES (all combinations
ofD ∈ {1, 2, 4},Rs ∈ {1, 2, 4} andRt ∈ {1, 2}) for SKIVA. We present a performance eval-
uation of these 18 implementations, as well as an experimental validation of the security
of our control-flow fault countermeasures. For an analysis of the power leakage of these
implementations, as well as a theoretical analysis of the security of SKIVA against data
faults, we refer to Kiaei et al. [179].

7.3.1 Performance

Our experimental evaluation has been carried on a prototype of SKIVA deployed on
the main FPGA (Cyclone IV EP4CE115) of an Altera DE2-115 board. The processor
is clocked at 50MHz and has access to 128 kB of RAM. Our performance results are ob-
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Figure 7.6: Time-Redundant computation of a bitsliced AES

tained by running the desired programs on bare metal. We assume that we have ac-
cess to a TRNG that frequently fills a register with a fresh 32-bit random string. Several
implementations of AES are available on our 32-bit, SPARC-derivative processor, with
varying degrees of performance. The vsliced implementation (using only 8 variables to
represent 128 bits of data) of BearSSL [246] performs at 48 C/B. Our bitsliced implemen-
tation (using 128 variables to represent 128 bits of data) performs favorably at 44 C/B
while weighing 8060 bytes: despite significant register pressure (128 live variables for 32
machine registers) introducing spilling and slowing down performance, the rotations of
MixColumn and the ShiftRows operations are compiled away, improving performance.
This bitsliced implementation serves as our baseline in the following.

Throughput (AES)

We evaluate the throughput of our 18 variants of AES, for each value of D ∈ {1, 2, 4},
Rs ∈ {1, 2, 4} and Rt ∈ {1, 2}. To remove the influence of the TRNG’s throughput from
this evaluation, we assume that its refill frequency is strictly higher than the rate at which
our implementation consumes random bits. In practice, a refill rate of 10 cycles for 32 bits
is enough to meet this requirement.

Table 7.1 shows the result of our benchmarks. For D and Rt fixed, the throughput
decreases linearly with Rs. At fixed D, the variant (D, Rs = 1, Rt = 2) (temporal re-
dundancy by a factor 2) exhibits similar throughput as (D, Rs = 2, Rt = 1) (spatial
redundancy by a factor 2). However, these two implementations are not equivalent from
a security standpoint. The former offers weaker security guarantees than the latter. Sim-
ilarly, at fixed D and Rs, we may be tempted to run twice the implementation (D, Rs,
Rt = 1) rather than running once the implementation (D, Rs, Rt = 2): once again, the se-
curity of the former is reduced compared to the latter since temporal redundancy (Rt = 2)
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Rt = 1
D

1 2 4

Rs

1 44 C/B 176 C/B 579 C/B
2 89 C/B 413 C/B 1298 C/B
4 169 C/B 819 C/B 2593 C/B

(a) Reciprocal throughput (Rt = 1)

Rt = 2
D

1 2 4

Rs

1 131 C/B 465 C/B 1433 C/B
2 269 C/B 1065 C/B 3170 C/B
4 529 C/B 2122 C/B 6327 C/B

(b) Reciprocal throughput (Rt = 2)

Table 7.1: Exhaustive evaluation of the AES design space

With impact Without impact
Detected Not detected Detected Not detected Crash # of faults

(1) (2) (3) (4) (5)
Rt = 1 0.19% 92.34% 0.00% 4.31% 3.15% 12840
Rt = 2 78.19% 0.00% 5.22% 12.18% 4.40% 21160

Table 7.2: Experimental results of simulated instruction skips

couples the computation of 2 rounds within each instruction, whereas pure instruction
redundancy (Rt = 1) does not.

Code Size (AES)

We measure the impact of the hardware and our software design on code size, using our
bitsliced implementation of AES as a baseline. SKIVA provides us with native support for
spatial, complementary redundancy (andc, xorc and xnorc). Performing these opera-
tions through software emulation would result in a ×1.3 (for D = 2) to ×1.4 (for D = 4)
increase in code size. One must nonetheless bear in mind that the security provided by
emulation is, a priori, not equivalent to the one provided by native support. The tempo-
ral redundancy (Rt = 2) mechanism comes at the expense of a small increase (less than
×1.06) in code size, due to the loop hardening protections as well as the checks validat-
ing results across successive rounds. The higher-order masking comes at a reasonable
expense in code size: going from 1 to 2 shares increases code size by ×1.5 whereas go-
ing from 2 to 4 shares corresponds to a ×1.6 increase. A fully protected implementation
(D = 4, Rs = 4, Rt = 2) thus weighs 13148 bytes.

7.3.2 Experimental Evaluation of Temporal Redundancy

We simulated the impact of faults on our implementation of AES. We focus our atten-
tion exclusively on control faults (instruction skips) since we can analytically predict the
outcome of data faults [179]. To this end, we implement a fault injection simulator using
gdb running through the JTAG interface of the FPGA board. We execute our implemen-
tation up to a chosen breakpoint, after which we instruct the processor to skip the current
instruction, hence simulating the effect of an instruction skip. In particular, we have ex-
haustively targeted every instruction of the first and last round as well as the pipelining
routine (for Rt = 2). Since rounds 2 to 9 use the same code as the first round, the ab-
sence of vulnerabilities against instruction skips within the latter means that the former
is secure against instruction skip as well. This exposes a total of 1248 injection points for
Rt = 2 and 1093 injection points for Rt = 1. For each such injection point, we perform
an instruction skip from 512 random combinations of keys and plaintexts for Rt = 2 and
352 random combinations for Rt = 1.

The results are summarized in Table 7.2. Injecting a fault had one of five effects. A
fault may yield an incorrect ciphertext with (1) or without (2) being detected. A fault
may yield a correct ciphertext, with (3) or without (4) being detected. Finally, a fault
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may cause the program or the board to crash (5). According to our attacker model, only
outcome (2) witnesses a vulnerability. In every other outcome, the fault either does not
produce a faulty ciphertext or is detected within two rounds. For Rt = 2, we verify that
every instruction skip was either detected (outcome 1 or 3) or had no effect on the output
of the corresponding round (outcome 4) or led to a crash (outcome 5). Comparatively,
with Rt = 1, nearly 95% of the instruction skips led to an undetected fault impacting the
ciphertext. In 0.19% of the cases, the fault actually impacts the fault-detection mechanism
itself, thus triggering a false positive.

7.4 Conclusion

In this chapter, we showed how, by targeting SKIVA, Usubac is able to generate code that
withstands power-based side-channel attacks as well as fault attacks.
We generated a bitsliced AES for SKIVA and evaluated its performance at various secu-
rity level (in terms of redundancy and masking), showing that SKIVA’s custom instruc-
tions for redundant and masked computation allow for relatively cheap countermeasures
against side-channel attacks.





Chapter 8

Conclusion

Writing, optimizing and protecting cryptographic implementations by hand are tedious
tasks, requiring knowledge in cryptography, CPU microarchitectures and side-channel
attacks. The resulting programs tend to be hard to maintain due to their high complexity.

To overcome these issues, we propose Usuba, a high-level domain-specific language to
write symmetric cryptographic primitives. Usuba programs act as specifications, en-
abling high-level reasoning about ciphers.

The cornerstone of Usuba is a programming technique commonly used in cryptog-
raphy called bitslicing, which is used to implement high-throughput and constant-time
ciphers. Drawing inspiration from existing variations of bitslicing, we proposed a gen-
eralization of bitslicing that we dubbed mslicing, which overcomes some drawbacks of
bitslicing (e.g., high register pressure, lack of efficient arithmetic) to increase throughput
even further.

Usuba allows developers to write sliced code without worrying about the actual par-
allelization: an Usuba program is a scalar description of a cipher, from which the Usubac
compiler automatically produces vectorized code. Furthermore, Usuba provides poly-
morphic types and constructions that are then automatically specialized for a given slic-
ing type (e.g., bitslicing, mslicing), thus abstracting implementation details (i.e., slicing)
from the source code.

Usubac incorporates several domain-specific optimizations to increase throughput.
Our bitslice scheduler reduces spilling in bitsliced code, which translates into speedups
of up to 35%. Our mslice scheduler aims at maximizing instruction-level parallelism in
msliced code and increases throughput by up to 39%. Finally, Usubac can automatically
interleave several independent instances of a cipher to maximize instruction-level paral-
lelism when scheduling fails to do so, which offers speedups of up to 35% as well. Over-
all, on modern Intel CPUs, Usuba is 3 to 5% slower than hand-tuned assembly imple-
mentation of AES, but performs on par with hand-tuned assembly or C implementations
of CHACHA20, SERPENT and GIMLI and outperforms manually optimized C implemen-
tations of ASCON, ACE, RECTANGLE and CLYDE.

Usubac can also automatically generate masking countermeasures against side-channel
attacks. By integrating tightPROVE+ in Usubac’s pipeline, we are able to guarantee that
the masked implementations generated by Usubac are provably secure against probing
attacks. We developed several optimizations tailored for masked programs (constant
propagation, loop fusion) to improve the performance of Usuba’s masked implemen-
tations. Using this automated masking generation, we were able to compare masked
implementations (at orders up to 127) of 11 ciphers from the recent NIST Lightweight
Cryptography Competition.

We also wrote a backend for SKIVA, automatically securing ciphers against both
power-based side-channel attacks and fault injections. We evaluated the throughput of
Usuba’s AES on the SKIVA platform, and empirically showed that this implementation
is resilient to instruction skip attacks.

163
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Some numbers. Usubac contains slightly over 10.000 lines of OCaml code. Its regres-
sion tests amount to 2.200 lines of C and 1.000 lines of Perl. The ciphers we implemented
in Usuba amount to more than 2.500 lines of code. Finally, the benchmarks we mentioned
throughout this thesis count more 2.300 lines of Perl scripts, which generates hundreds
of millions of lines of C code.

8.1 Future Work

8.1.1 Fine-Grained Autotuning

Rather than considering nodes (resp., loops) one by one for inlining (resp., unrolling),
Usubac’s autotuner (Section 4.2.1, Page 96) evaluates the impact of inlining all nodes
and unrolling all loops. While this may lead to suboptimal code, the space of all possible
combinations of inlining, unrolling, scheduling and interleaving is often too large to be
explored in reasonable time. This is a known issue that autotuners must overcome, for
instance by using higher-level heuristics to guide the search [253, 49].

In Usuba, we could also improve the efficiency of the autotuner by combining its
empirical evaluation with static analysis. For instance, a node with fewer than 2 instruc-
tions will always be more efficient inlined (to remove the overhead of calling a function).
Similarly, instructions per cycle (IPC) can be statically estimated to guide optimizations:
interleaving, for instance, will never improve the performance of a code whose IPC is 4.

8.1.2 mslicing on General-Purpose Registers

In Section 5.3 (Page 132), we mentioned that the lack of x86-64 instruction to shift 4 16-
bit words in a single 64-bit register prevents us from parallelizing RECTANGLE’s vsliced
implementation on general-purpose registers.
However, in practice, the pdep u64 intrinsic can be used to interleave 4 independent
64-bit inputs of RECTANGLE in 4 64-bit registers. This instruction takes a register a and
an integer mask as parameters, and dispatches the bits of a to a new register following
the pattern specified in mask.
For instance, using pdep u64 with the mask 0x8888888888888888 would dispatch
a 16-bit input of RECTANGLE into a 64-bit register as shown in Figure 8.1a. A second input
of RECTANGLE could be dispatched into the next bits using the mask 0x4444444444444444
(Figure 8.1b). Repeating the process with two more inputs using the masks 0x2222222222222222
and 0x1111111111111111, and then combining the results (using a simple or) would
produce a 64-bit register containing 4 interleaved 16-bit inputs of RECTANGLE. Since
RECTANGLE’s whole input is made of 64 bits, this process needs to be repeated 4 times.
Then, regular shift and rotate instructions can be used to independently rotate each
input. A left-rotation by 2 can now be done by a simple left-rotation by 8, as shown in
Figure 8.2.

In essence, this technique relies on a data-layout inspired by hslicing (bits of the in-
put are split along the horizontal direction of the registers), while offering access to a
limited set of vslice instructions: bitwise instructions and shifts/rotates can be used, but
arithmetic instructions cannot. This mode could be incorporated within Usuba in order
to increase throughput on general-purpose registers. Gottschlag et al. [149] showed, for
instance, that because of the CPU frequency reduction triggered by AVX and AVX512, a
single process using AVX or AVX512 instructions can slow down other workloads run-
ning in parallel. Implementing this efficient mslicing on general-purpose register might
therefore enable systemwide performance improvements.
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0 0 0 0 0 0 0 0 0 0 0 0 ... 000000

(a) Mask = 0x8888888888888888

0 0 0 0 0 0 0 0 0 0 0 ... 0000000 0

(b) Mask = 0x4444444444444444

Figure 8.1: Intel pdef u64 instruction

...

...

Figure 8.2: Left-rotation by 2 after packing data with pdef u64

8.1.3 Hybrid mslicing

Recall the main computing nodes of CHACHA20:

node QR (a:u32, b:u32, c:u32, d:u32)
returns (aR:u32, bR:u32, cR:u32, dR:u32)

let
a := a + b;
d := (d ˆ a) <<< 16;
c := c + d;
b := (b ˆ c) <<< 12;
aR = a + b;
dR = (d ˆ aR) <<< 8;
cR = c + dR;
bR = (b ˆ cR) <<< 7; tel

node DR (state:u32x16) returns (stateR:u32x16)
let

state[0,4,8,12] := QR(state[0,4,8,12]);
state[1,5,9,13] := QR(state[1,5,9,13]);
state[2,6,10,14] := QR(state[2,6,10,14]);
state[3,7,11,15] := QR(state[3,7,11,15]);

stateR[0,5,10,15] = QR(state[0,5,10,15]);
stateR[1,6,11,12] = QR(state[1,6,11,12]);
stateR[2,7,8,13] = QR(state[2,7,8,13]);
stateR[3,4,9,14] = QR(state[3,4,9,14]); tel
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Figure 8.3: CHACHA20’s round

Within the node DR, the node QR is called 4 times on independent inputs, and then
4 times again on independent inputs. Figure 8.3 provides a visual representation of the
first 4 calls to DR.

In vslicing, each 32-bit word of the state is mapped to a SIMD register, and these
registers are filled with independent inputs. Figure 8.4a illustrates the first 4 calls to QR
(first half of DR) using this vslice representation, and Figure 8.4b illustrate the last 4 calls
to QR (second half of DR).
Using pure vslicing may be suboptimal because 16 registers are required, which leaves
no register for temporary variables on SSE and AVX. In practice, at least one register of
the state is spilled to memory.

Rather than parallelizing CHACHA20 by filling SSE and AVX register with indepen-
dent inputs, it is possible to do the parallelization of a single instance on SSE registers
(respectively, two instances on AVX2). Since the first 4 calls to QR operate on indepen-
dent values, we can pack the 16 32-bit words of the state within 4 SSE (or AVX) registers,
and a single call to QR will compute it four times on a single input, as illustrated by
Figure 8.5a.

Three rotations are then needed to reorganize the data for the final 4 calls to QR (Fig-
ure 8.5b). On SSE or AVX registers, those rotations would be done using a shuffle
instruction. Finally, a single call to QR computes the last 4 calls, as illustrated in Fig-
ure 8.5c.

Compared to vslicing, this technique requires fewer independent inputs: on SSE
(resp., AVX), it requires only 1 (resp., 2) independent inputs to reach the maximal through-
put, while in vslicing, 4 (resp., 8) independent inputs are required. Also, the latency is
divided by 4 compared to vslicing.
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The downside is that it requires additional shuffles to reorganize the data within each
round and at the end of each round, which incurs an overhead compared to vslicing.
Furthermore, recall from Section 4.2.5 (Page 100) that CHACHA20’s quarter round (QR)
is bound by data dependencies. In vslicing, Usubac’s scheduling algorithm is able to
interleave 4 quarter rounds, thus removing any stalls related to data dependencies. This
is not possible with this hybrid sliced form, since only two calls to QR remain, both of
which cannot be computed simultaneously.

However, a lower register pressure allows such an implementation of CHACHA20
to be implemented without any spilling, which improves performance. Furthermore,
because this implementation only uses 5 registers (4 for the state + 1 temporary), it can be
interleaved 3 times without introducing any spilling. This interleaving would remove the
data hazards from QR. As mentioned in Section 5.1 (Page 125), the fastest implementation
of GIMLI on AVX2 uses this technique, and is faster than Usuba’s vsliced implementation.

We can understand this technique as an intermediary stage between vertical and hor-
izontal slicing. One way to incorporate it to Usuba would be to represent atomic types
with a word size m and a vector size V (umV ), instead of a direction D and a word size
m (uDm). The word size would correspond to the size of the packed elements within
SIMD registers, and the vector size would represent how many elements of a given input
are packed within the same register. For instance, CHACHA20’s hybrid implementation
would manipulate a state of 4 values of type u324.

Using this representation, a vslice type uVm corresponds to um1, while a hslice type
uHm corresponds to u1m, and a bitslice type uD1 would unsurprisingly correspond to
u11.

A type umV is valid only if the target architecture offers SIMD vectors able to contain
V words of size m. Arithmetic instructions are possible between two umV values (pro-
vided that the architecture offers instruction to perform m-bit arithmetic) and shuffles
are allowed if the architecture offers instructions to shuffle m-bit words.

8.1.4 Mode of Operation

One of the commonly used mode of operation is counter mode (CTR). In this mode (il-
lustrated in Figure 1.7b, Page 30), a counter is encrypted by the primitive (rather than
encrypting the plaintext directly), and the output of the primitive is xored with a block
of plaintext to produce the ciphertext. The counter is incremented by one for each subse-
quent block of the plaintext to encrypt.

For 256 consecutive block to encrypt, only the last byte of the counter changes, and
the others remain constant. Hongjun Wu and later Bernstein and Schwabe [66] observed
that the last byte of AES’s input only impacts 4 bytes during the first round, as illus-
trated by Figure 8.6. The results of the first round of AddRoundKey, SubBytes and
ShiftRows on the first 15 bytes, as well as MixColumns on 12 bytes can thus be cached
and reused for 256 encryptions. Concretely, the first round of AES only requires comput-
ing AddRoundKey and SubBytes on a single byte (ShiftRows does not require compu-
tation), and MixColumns on 4 bytes instead of 16. Similarly, 12 of the 16 AddRoundKey
and SubBytes of the second round can be cached. Additionally, Park and Lee [239]
showed that some values can be precomputed to speed up computation even further
(while keeping the constant-time property of bitslicing). Only 4 bytes of the output of
the first round depends on the last byte, which can take 256 values. Thus, it is possible to
precompute all 256 possible values for these 4 bytes (which can be stored a 4×256 = 1KB
table, and reuse them until incrementing the counter past the 6th least significant byte of
the counter (b10 on the figure above, which is an input of the same MixColumn as b15),
that is, once every 1 trillion block.
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Figure 8.6: AES’s first round in CTR mode

To integrate such optimizations in Usuba, we will have to broaden its scope to sup-
port modes of operation: Usuba currently does not offer support for stateful computa-
tions and forces loops to have static bounds. We would then need to extend the optimizer
to exploit the specificities of the Usuba programming model.

8.1.5 Systematic Evaluation on Diverse Vectorized Architectures

Publication

This preliminary work was done in collaboration with Pierre-Évariste Dagand
(LIP6), Lionel Lacassagne (LIP6) and Gilles Muller (LIP6). It led to the following
publication:

D. Mercadier, P. Dagand, L. Lacassagne, and G. Muller. Usuba: Optimizing &
trustworthy bitslicing compiler. In Proceedings of the 4th Workshop on Programming
Models for SIMD/Vector Processing, WPMVP@PPoPP 2018, Vienna, Austria, February
24, 2018, pages 4:1–4:8, 2018. doi: 10.1145/3178433.3178437

We focused our evaluation of vectorization to Intel architectures, because of their
wide availability. Other architectures, such as AltiVec on PowerPC and Neon on ARM,
offer similar instructions as SSE and AVX. In particular, both AltiVec and Neon pro-
vide 128-bit registers supporting 8/16/32/64-bit arithmetic and shift instructions (used
in vslicing), shuffles (used in hslicing) and 128-bit bitwise instructions (used in all slic-
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Figure 8.7: Bitsliced DES scaling on Neon, AltiVec and SSE/AVX2/AVX512

ing types). As a proof-of-concept, we thus implemented AltiVec and Neon backends in
Usubac.

Figure 8.7 reports the speedup offered by vector extensions on a bitsliced DES (in-
cluding the transposition) on several architectures: SKL is our Intel Xeon W-2155 (with
64-bit general-purpose registers, 128-bit SSE, 256-bit AVX2, 512-bit AVX512), PowerPC
is a PPC 970MP (with 64-bit general-purpose registers and 128-bit AltiVec SIMD), and
ARMv7 is an ARMv7 Raspberry Pi3 (with 32-bit general-purpose registers and 128-bit
Neon SIMD). Throughputs have been normalized on each architecture to evaluate the
speedups of vector extensions rather than the raw throughputs.

The speedups offered by SIMD extensions vary from one architecture to the other.
PowerPC’s AltiVec offer 32 registers and 3-operand instructions, and thus expectedly
perform better than Intel’s SSE comparatively to a 64-bit baseline. ARM’s Neon exten-
sions, on the other hand, only offer 16 registers, resulting in a similar speedup as Intel’s
AVX2 (note that ARMv7 has 32-bit registers whereas Skylake has 64-bit registers).

This benchmark only deals with bitslicing, and thus does not exploit arithmetic in-
structions, shuffles, or other architecture-specific SIMD instructions.

8.1.6 Verification

Bugs in implementations of cryptographic primitives can have devastating consequences
[94, 152, 84, 56]. To alleviate the risk of errors, several recent projects aim at generating
cryptographic code while ensuring the functional correctness of the executable code [310,
18, 87].

Figure 8.8 illustrates how end-to-end functional correctness could be added to the
Usubac compiler. We propose to prove the correctness of the frontend by formally prov-
ing that each normalization passes preserves the semantics of the input program. Sev-
eral works already showed how to prove the correctness of normalization of dataflow
languages [89, 24, 23].

For the backend (optimizations), translation validation [244] would certainly be more
practical, in the sense that it does not require proving that each optimization preserves
semantics. The principle of translation validation is to check whether the program ob-
tained after optimization has the same behavior as the program before optimization. This
does not guarantee that the compiler is correct for all possible input programs, but it is
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Figure 8.8: Pipeline of a semantics-preserving Usuba compiler

sufficient to guarantee that the compilation of a given program is correct. Translation
validation is a tried-and-trusted approach to develop certified optimizations [292].

We implemented a proof-of-concept translation validation for the optimizations of
the Usubac compiler. The principle is simple: we extract two SAT formulas from the
pipeline, one before the optimizations, and one after. We then feed them to the Boolector
SAT solver [224], which checks whether they are equivalent (or, more precisely, whether
an input exists such that feeding it to both formulas produces two distinct outputs). Ex-
traction of a SAT formula from an Usuba0 program is straightforward thanks to our
dataflow semantics: an Usuba0 program is simply a set of equations.

We used this approach to verify the correctness of our optimizations for RECTANGLE

(bitsliced and vsliced), DES (bitsliced), AES (bitsliced), CHACHA20 (vsliced) and SER-
PENT (vsliced). In all cases, Boolector was able to check the equivalence of the programs
pre and post-optimizations in less than a second. This approach is thus practical (i.e., it
can verify equivalence of Usuba0 programs in a reasonable amount of time) and requires
little to no investment to be implemented.

For additional confidence in the translation validation approach, a certified SAT solver,
such as SMTCoq [22], could be used to make sure that the SAT encoding faithfully cap-
tures the Usuba semantics.

Finally, translation from Usuba0 to imperative code can be formally verified using
existing techniques of the dataflow community [89]. We could either target CompCert
[82, 199]. Or, if we decide to generate assembly code ourselves (to improve performance,
as motivated in Section 6.3.3, Page 146), we can generate Jasmin assembly [18] and benefit
from its mechanized semantics. In both cases (CompCert and Jasmin), further work is
required to support SIMD instruction sets.
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8.1.7 Targeting GPUs

A lot of implementations of cryptographic algorithms on graphics processing units (GPU)
have been proposed in the last 15 years [205, 287, 236, 159, 113], including some im-
plementation of bitsliced DES [307, 228, 11] and bitsliced AES [203, 226, 158, 241, 307].
Throughputs of more than 1 Tbits per seconds are reported for AES by Hajihassani et al.
[158]. The applications of such high-throughput implementations include, among oth-
ers, password cracking [282, 26], random number generation [218, 198] or disk encryption
[10, 285].

Both bitsliced [158, 241, 307] and msliced [203, 226] implementations of AES have
been demonstrated on GPU. Additionally, Nishikawa et al. [226] showed that GPUs offer
a large design space: a computation is broken down into many threads, registers are a
shared resource between threads, a limited amount of thread can be executed simultane-
ously, etc. Nishikawa et al. [226] thus proposed an evaluation of the impact of some of
those parameters on an msliced AES. Usuba could provide an opportunity to systemati-
cally explore this design space across a wide range of ciphers.
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masking. In E. Oswald and M. Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science, pages 457–485.
Springer, 2015. doi: 10.1007/978-3-662-46800-5\ 18.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SUNDAE-GIFT-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SUNDAE-GIFT-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SUNDAE-GIFT-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/gift-cofb-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/gift-cofb-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/gift-cofb-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/PHOTON-Beetle-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/PHOTON-Beetle-spec.pdf
http://eprint.iacr.org/2005/160


178 BIBLIOGRAPHY

[44] G. Barthe, S. Belaı̈d, F. Dupressoir, P. Fouque, B. Grégoire, P. Strub, and R. Zucchini. Strong non-
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[256] F. Regazzoni, T. Eisenbarth, J. Großschädl, L. Breveglieri, P. Ienne, I. Koren, and C. Paar. Power
attacks resistance of cryptographic s-boxes with added error detection circuits. In C. Bolchini, Y. Kim,
A. Salsano, and N. A. Touba, editors, 22nd IEEE International Symposium on Defect and Fault-Tolerance
in VLSI Systems (DFT 2007), 26-28 September 2007, Rome, Italy, pages 508–516. IEEE Computer Society,
2007. doi: 10.1109/DFT.2007.61.

[257] F. Regazzoni, L. Breveglieri, P. Ienne, and I. Koren. Interaction between fault attack countermeasures
and the resistance against power analysis attacks. In M. Joye and M. Tunstall, editors, Fault Analysis
in Cryptography, Information Security and Cryptography, pages 257–272. Springer, 2012. doi: 10.1007/
978-3-642-29656-7\ 15.

https://bearssl.org/
https://www.bearssl.org/ctmul.html
http://www.bolet.org/~pornin/2001-phd-pornin.pdf
http://eprint.iacr.org/2001/037


BIBLIOGRAPHY 191

[258] G. Ren. Compiling Vector Programs for SIMD Devices. PhD thesis, University of Illinois at Urbana-
Champaign, 2006.

[259] O. Reparaz, J. Balasch, and I. Verbauwhede. Dude, is my code constant time? In Design, Automation
& Test in Europe Conference & Exhibition, DATE 2017, Lausanne, Switzerland, March 27-31, 2017, pages
1697–1702, 2017. doi: 10.23919/DATE.2017.7927267.

[260] O. Reparaz, L. De Meyer, B. Bilgin, V. Arribas, S. Nikova, V. Nikov, and N. P. Smart. CAPA: the spirit
of beaver against physical attacks. In Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, pages 121–151,
2018. doi: 10.1007/978-3-319-96884-1\ 5.

[261] V. Rijmen. Efficient implementation of the rijndael s-box. Katholieke Universiteit Leuven, Dept. ESAT.
Belgium, 2000.

[262] M. Rivain and E. Prouff. Provably secure higher-order masking of AES. In Cryptographic Hardware and
Embedded Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010.
Proceedings, pages 413–427, 2010. doi: 10.1007/978-3-642-15031-9\ 28.

[263] M. Rivain, E. Dottax, and E. Prouff. Block ciphers implementations provably secure against sec-
ond order side channel analysis. In Fast Software Encryption, 15th International Workshop, FSE
2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected Papers, pages 127–143, 2008. doi:
10.1007/978-3-540-71039-4\ 8.

[264] R. L. Rivest. The MD5 message-digest algorithm. RFC, 1321:1–21, 1992. doi: 10.17487/RFC1321.

[265] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM, 21(2):120–126, 1978. doi: 10.1145/359340.359342.

[266] A. D. Robison. Composable parallel patterns with intel cilk plus. Computing in Science & Engineering,
15(2):66–71, 2013.
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Appendix A

Backend optimizations

In order to give more visual intuitions of the impact of Usubac’s optimizations, we re-
ported the results by the mean of figures in Section 4.2. In this appendix, in order to give
a more precise understanding of the impact of these optimizations, we provide the more
precise (but less readable) results.

Cipher
Inlining speedup

Clang GCC
x86 AVX2 x86 AVX2

ACE 1.54 1.33 1.64 1.01
AES - 1.01 - 1.43
ASCON 1.20 1.01 1.89 1.15
CHACHA20 1.25 1.11 1.23 1.20
CLYDE 1.16 1.02 1.16 1.22
GIFT 1.69 0.93 1.37 1.05
GIMLI 0.97 0.99 1.23 1.33
PYJAMASK 1.35 0.99 1.08 1.11
RECTANGLE (hslice) - 0.96 - 0.97
RECTANGLE (vslice) 1.00 0.99 0.97 0.96
SERPENT 1.01 0.99 1.27 1.27
XOODOO 1.25 0.98 1.61 1.39

Table A.1: Impact of fully inlining msliced ciphers

Cipher
Mslice scheduling speedup
x86 AVX2

ACE 1.35 1.39
AES - 1.04
ASCON 1.10 1.04
CHACHA20 1.05 1.10
CLYDE 1.02 1.04
GIFT 1.01 1.00
GIMLI 0.98 1.01
RECTANGLE(vsliced) 0.97 1.00
RECTANGLE(hsliced) - 1.02
SERPENT 0.97 1.00
XOODOO 1.03 1.00

Table A.2: Performance of the mslice scheduling algorithm (compiled with Clang 7.0.0)
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Cipher
Inlining speedup

Clang GCC
x86 AVX2 x86 AVX2

ACE 1.16 1.54 1.75 3.57
AES 1.28 1.64 1.27 1.43
ASCON 1.20 2.50 1.45 2.56
CLYDE 1.08 1.79 1.02 1.35
DES 1.41 1.96 1.30 1.72
GIFT 3.70 5.88 3.45 8.33
GIMLI 1.41 2.00 1.79 3.03
PHOTON 1.18 1.75 2.00 2.44
PRESENT 1.23 1.08 1.05 0.97
PYJAMASK 5.26 1.20 8.33 8.33
RECTANGLE 1.72 2.33 1.59 2.44
SKINNY 2.63 4.00 2.78 4.76
SPONGENT 1.52 3.12 1.49 3.03
SUBTERRANEAN 2.00 3.03 1.96 2.86
XOODOO 1.37 2.33 1.47 2.08

Table A.3: Impact of fully inlining bitsliced ciphers

Cipher
Bitslice scheduling speedup

GCC -Os GCC -O3 Clang -O3
x86 AVX2 x86 AVX2 x86 AVX2

AES 1.04 0.99 1.06 0.98 1.08 1.04
ASCON 1.35 1.32 1.25 1.27 1.04 1.19
CLYDE 1.06 1.06 1.06 1.04 1.01 0.99
DES 1.16 1.19 1.16 1.23 1.01 1.02
GIFT 1.16 1.18 1.12 1.16 1.04 1.09
PHOTON 1.05 1.14 0.97 0.93 0.96 0.97
PRESENT 1.30 1.10 1.16 1.16 1.00 1.00
PYJAMASK 1.19 1.35 1.04 1.04 0.99 1.00
RECTANGLE 1.28 1.20 1.15 1.15 1.00 0.99
SERPENT 1.18 1.20 1.20 1.20 1.04 1.00
SKINNY 1.14 1.16 1.18 1.18 1.03 1.14

Table A.4: Performance of the bitslice scheduling algorithm
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